精英家教網 > 高中數學 > 題目詳情

【題目】若奇函數y=f(x)在區間(0,+∞)上是增函數,又f(﹣3)=0,則不等式f(x)<0的解集為(
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(0,3)
D.(﹣∞,﹣3)∪(3,+∞)

【答案】C
【解析】解:∵f(x)是奇函數,f(﹣3)=0, ∴f(﹣3)=﹣f(3)=0,解f(3)=0.
∵函數在(0,+∞)內是增函數,
∴當0<x<3時,f(x)<0.
當x>3時,f(x)>0,
∵函數f(x)是奇函數,
∴當﹣3<x<0時,f(x)>0.
當x<﹣3時,f(x)<0,
則不等式f(x)<0的解集{x|x<﹣3或0<x<3}.
故選C.

【考點精析】本題主要考查了奇偶性與單調性的綜合的相關知識點,需要掌握奇函數在關于原點對稱的區間上有相同的單調性;偶函數在關于原點對稱的區間上有相反的單調性才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】選修4-5:不等式選講

已知,且.

(1)求的最小值;

(2)求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知平面內一動點與兩定點連線的斜率之積等于.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)設直線 )與軌跡交于、兩點,線段的垂直平分線交軸于點,當變化時,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,側面是邊長為2的正三角形, , .

(Ⅰ)求證:平面平面;

(Ⅱ)設是棱上的點,當平面時,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=sin(ωx+φ)( )的最小正周期是π,若其圖象向右平移 個單位后得到的函數為奇函數,則函數f(x)的圖象(
A.關于點 對稱
B.關于點 對稱
C.關于直線 對稱
D.關于直線 對稱

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中, , 是自然對數的底數.

(Ⅰ)討論的單調性;

(Ⅱ)設函數,證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某保險公司針對企業職工推出一款意外險產品,每年每人只要交少量保費,發生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為、、三類工種,根據歷史數據統計出三類工種的每賠付頻率如下表(并以此估計賠付概率).

(Ⅰ)根據規定,該產品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;

(Ⅱ)某企業共有職工20000人,從事三類工種的人數分布比例如圖,老板準備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若函數有零點,求實數的取值范圍;

(2)證明:當時,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下表提供了某廠節能降耗技術改進后生產甲產品過程中記錄的產量x(噸)與相應的生產能耗y(噸標準煤)的幾組對照數據.

x

3

4

5

6

y

2.5

3

4

4.5


(1)請根據上表提供的數據,用最小二乘法求出y關于x的回歸方程 = x+ ;
(2)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(1)求出的回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤? (參考數值:3×2.5+4×3+5×4+6×4.5=66.5)計算回歸系數 , .公式為

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视