【題目】設函數f(x)=xex﹣asinxcosx(a∈R,其中e是自然對數的底數).
(1)當a=0時,求f(x)的極值;
(2)若對于任意的x∈[0, ],f(x)≥0恒成立,求a的取值范圍;
(3)是否存在實數a,使得函數f(x)在區間 上有兩個零點?若存在,求出a的取值范圍;若不存在,請說明理由.
【答案】
(1)解:當a=0時,f(x)=xex,f′(x)=ex(x+1),
令f′(x)=0,得x=﹣1,
列表如下:
x | (﹣∞,﹣1) | ﹣1 | (﹣1,+∞) |
f′(x) | + | 0 | ﹣ |
f(x) | ↘ | 極小值 | ↗ |
所以函數f(x)的極小值為 ,無極大值
(2)解:①當a≤0時,由于對于任意 ,有sinxcosx≥0,
所以f(x)≥0恒成立,當a≤0時,符合題意;
②當0<a≤1時,因為f′(x)≥ex(x+1)﹣acos2x≥e0(0+1)﹣acos0=1﹣a≥0,
所以函數f(x)在 上為增函數,所以f(x)≥f(0)=0,即當0<a≤1,符合題意;
③當a>1時,f′(0)=1﹣a<0, ,
所以存在 ,使得f′(α)=0,且在(0,α)內,f′(x)<0,
所以f(x)在(0,α)上為減函數,所以f(x)<f(0)=0,
即當a>1時,不符合題意,
綜上所述,a的取值范圍是(﹣∞,1]
(3)解:不存在實數a,使得函數f(x)在區間 上有兩個零點,
由(2)知,當a≤1時,f(x)在 上是增函數,且f(0)=0,
故函數f(x)在區間 上無零點,
當a>1時,f′(x)≥ex(x+1)﹣acos2x,
令g(x)=ex(x+1)﹣acos2x,g′(x)=ex(x+2)+2asin2x
當 時,恒有g′(x)>0,所以g(x)在
上是增函數,
由 ,
故g(x)在 上存在唯一的零點x0,即方程f′(x)=0在
上存在唯一解x0,
且當x∈(0,x0)時,f′(x)<0,當 ,f′(x)>0,
即函數f(x)在(0,x0)上單調遞減,在 上單調遞增,
當x∈(0,x0)時,f(x)<f(0)=0,即f(x)在(0,x0)無零點;
當 時,
,
所以f(x)在 上有唯一零點,
所以,當a>1時,f(x)在 上有一個零點,
綜上所述,不存在實數a,使得函數f(x)在區間 上有兩個零點
【解析】(1)將a=0代入f(x),求出函數的導數,列出表格,求出函數的極值即可;(2)通過討論a的范圍,求出函數的導數,確定函數的單調區間,從而確定a的范圍即可;(3)求出當a≤1時,函數f(x)在區間 上無零點,a>1時,求出函數的導數,根據函數的單調性得到f(x)在
上有一個零點,從而判斷結論即可.
【考點精析】解答此題的關鍵在于理解函數的極值與導數的相關知識,掌握求函數的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值,以及對函數的最大(小)值與導數的理解,了解求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數學 來源: 題型:
【題目】給出兩個命題:
命題甲:關于x的不等式x2+(a﹣1)x+a2≤0的解集為;
命題乙:函數y=(2a2﹣a)x為增函數.
(1)甲、乙至少有一個是真命題;
(2)甲、乙有且只有一個是真命題;
分別求出符合(1)(2)的實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C: =1(a>1)的左、右頂點分別為A、B,P是橢圓C上任一點,且點P位于第一象限.直線PA交y軸于點Q,直線PB交y軸于點R.當點Q坐標為(0,1)時,點R坐標為(0,2)
(1)求橢圓C的標準方程;
(2)求證: 為定值;
(3)求證:過點R且與直線QB垂直的直線經過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓過定點P(4,0),且在y軸上截得的弦MN的長為8.
(1)求動圓圓心C的軌跡方程;
(2)過點(2,0)的直線l與動圓圓心C的軌跡交于A,B兩點,求證:是一個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(a>b>0)的離心率為
,以坐標原點O為圓心,橢圓C的短半軸長為半徑的圓與直線x+y+
=0相切.A,B分別是橢圓C的左、右頂點,直線l過B點且與x軸垂直.
(1)求橢圓C的標準方程;
(2)設G是橢圓C上異于A,B的任意一點,過點G作GH⊥x軸于點H,延長HG到點Q使得|HG|=|GQ|,連接AQ并延長交直線l于點M,N為線段MB的中點,判斷直線QN與以AB為直徑的圓O的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲,乙兩人進行圍棋比賽,共比賽2n(n∈N+)局,根據以往比賽勝負的情況知道,每局甲勝的概率和乙勝的概率均為 .如果某人獲勝的局數多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n).
(1)求P(2)與P(3)的值;
(2)試比較P(n)與P(n+1)的大小,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知橢圓 =1(a>b>0)的離心率為
,長軸長為4,過橢圓的左頂點A作直線l,分別交橢圓和圓x2+y2=a2于相異兩點P,Q.
(1)若直線l的斜率為 ,求
的值;
(2)若 =λ
,求實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲,乙兩人進行圍棋比賽,共比賽2n(n∈N+)局,根據以往比賽勝負的情況知道,每局甲勝的概率和乙勝的概率均為 .如果某人獲勝的局數多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n).
(1)求P(2)與P(3)的值;
(2)試比較P(n)與P(n+1)的大小,并證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com