【題目】已知函數f(x)= ,直線y=
x為曲線y=f(x)的切線(e為自然對數的底數).
(1)求實數a的值;
(2)用min{m,n}表示m,n中的最小值,設函數g(x)=min{f(x),x﹣ }(x>0),若函數h(x)=g(x)﹣cx2為增函數,求實數c的取值范圍.
【答案】
(1)解:函數f(x)= 的導數為f′(x)=
,
設切點為(m,n),即有n= ,n=
m,
可得ame=em,①
由直線y= x為曲線y=f(x)的切線,可得
=
,②
由①②解得m=1,a=1;
(2)解:函數g(x)=min{f(x),x﹣ }(x>0),
由f(x)= 的導數為f′(x)=
,
當0<x<2時,f(x)遞增,x>2時,f(x)遞減.
對x﹣ 在x>0遞增,設y=f(x)和y=x﹣
的交點為(x0,y0),
由f(1)﹣(1﹣1)= >0,f(2)﹣(2﹣
)=
﹣
<0,即有1<x0<2,
當0<x<x0時,g(x)=x﹣ ,
h(x)=g(x)﹣cx2=x﹣ ﹣cx2,h′(x)=1+
﹣2cx,
由題意可得h′(x)≥0在0<x<x0時恒成立,
即有2c≤ +
,由y=
+
在(0,x0)遞減,
可得2c≤ +
①
當x≥x0時,g(x)= ,
h(x)=g(x)﹣cx2= ﹣cx2,h′(x)=
﹣2cx,
由題意可得h′(x)≥0在x≥x0時恒成立,
即有2c≤ ,由y=
,可得y′=
,
可得函數y在(3,+∞)遞增;在(x0,3)遞減,
即有x=3處取得極小值,且為最小值﹣ .
可得2c≤﹣ ②,
由①②可得2c≤﹣ ,解得c≤﹣
.
【解析】(1)求出f(x)的導數,設出切點(m,n),可得切線的斜率,由切線方程可得a,m的方程,解方程可得a=1;(2)y=f(x)和y=x﹣ 的交點為(x0 , y0),分別畫出y=f(x)和y=x﹣
在x>0的圖象,可得1<x0<2,再由新定義求得最小值,求得h(x)的解析式,由題意可得h′(x)≥0在0<x<x0時恒成立,運用參數分離和函數的單調性,即可得到所求c的范圍.
科目:高中數學 來源: 題型:
【題目】甲,乙兩人進行圍棋比賽,共比賽2n(n∈N+)局,根據以往比賽勝負的情況知道,每局甲勝的概率和乙勝的概率均為 .如果某人獲勝的局數多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n).
(1)求P(2)與P(3)的值;
(2)試比較P(n)與P(n+1)的大小,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AB=2,CD=4,BC= ,點E,F分別為AD,BC的中點.如果對于常數λ,在ABCD的四條邊上,有且只有8個不同的點P使得
=λ成立,那么實數λ的取值范圍為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知非空集合M滿足M{0,1,2,…,n}(n≥2,n∈N+).若存在非負整數k(k≤n),使得當a∈M時,均有2k﹣a∈M,則稱集合M具有性質P.設具有性質P的集合M的個數為f(n).
(1)求f(2)的值;
(2)求f(n)的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,以原點O為頂點,以y軸為對稱軸的拋物線E的焦點為F(0,1),點M是直線l:y=m(m<0)上任意一點,過點M引拋物線E的兩條切線分別交x軸于點S,T,切點分別為B,A.
(1)求拋物線E的方程;
(2)求證:點S,T在以FM為直徑的圓上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,A,B,C的對邊分別是a,b,c,3sin2C+8sin2A=11sinAsinC,且c<2a.
(1)求證:△ABC為等腰三角形
(2)若△ABC的面積為8 .且sinB=
,求BC邊上的中線長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某居民區隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數據資料,算得=80,
=20,
=184,
=720.
(1)求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a;
(2)判斷變量x與y之間是正相關還是負相關;
(3)若該居民區某家庭月收入為7千元,預測該家庭的月儲蓄.
附:線性回歸方程y=bx+a中, ,a=
-b
,其中
,
為樣本平均值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com