已知橢圓的左右焦點分別為
,短軸兩個端點為
,且四邊形
是邊長為2的正方形.
(1)求橢圓的方程;
(2)若分別是橢圓長軸的左右端點,動點
滿足
,連接
,交橢圓于點
.證明:
為定值;
(3)在(2)的條件下,試問軸上是否存在異于點
的定點
,使得以
為直徑的圓恒過直線
的交點,若存在,求出點
的坐標;若不存在,請說明理由.
(1);(2)證明見解析;(3)存在,
.
解析試題分析:(1)由橢圓的幾何性質知,
,結合
可很快求得
,這樣就得出了橢圓的標準方程;(2)若
,
,則
,因此我們要把
用
表示出來,先用
把直線
方程寫出,然后與橢圓方程聯立解方程組可得
(注意消去
得關于
的二次方程,這個二次方程有一個解是
,另一解是
,這樣很容易得到
,于是有
);(3)這是存在性命題,總是假設
點存在,設
,由題意則應該有
,即
,而點
的坐標在(2)中已經用
表示出來了,因此利用
若能求出
,則說明符合題意的點
存在,否則就不存在.
(1),
,
橢圓方程為
4分
(2),設
,則
.
直線:
,即
,
代入橢圓得
,
.
,
(定值). 10分
(3)設存在滿足條件,則
.
,
,
則由得
,從而得
.
存在
滿足條件 16分
考點:(1)橢圓標準方程;(2)解析幾何中的定值問題;(3)解析幾何中的存在性命題.
科目:高中數學 來源: 題型:解答題
已知直線L:kx-y+1+2k=0.
(1)求證:直線L過定點;
(2)若直線L交x軸負半軸于點A,交y正半軸于點B,△AOB的面積為S,試求S的最小值并求出此時直線L的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知直線l:kx-y+1+2k=0.
(1)求證:直線l過定點;
(2)若直線l交x軸負半軸于點A,交y正半軸于點B,△AOB的面積為S,試求S的最小值并求出此時直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2013•重慶)如圖,橢圓的中心為原點O,長軸在x軸上,離心率,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,|AA′|=4.
(1)求該橢圓的標準方程;
(2)取垂直于x軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.若PQ⊥P'Q,求圓Q的標準方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com