精英家教網 > 高中數學 > 題目詳情

【題目】某工廠有兩臺不同機器AB生產同一種產品各10萬件,現從各自生產的產品中分別隨機抽取二十件,進行品質鑒定,鑒定成績的莖葉圖如下所示:

該產品的質量評價標準規定:鑒定成績達到的產品,質量等級為優秀;鑒定成績達到的產品,質量等級為良好;鑒定成績達到的產品,質量等級為合格將這組數據的頻率視為整批產品的概率

(1)從等級為優秀的樣本中隨機抽取兩件,記為來自B機器生產的產品數量,寫出的分布列,并求的數學期望;

(2)完成下列列聯表,以產品等級是否達到良好以上(含良好)為判斷依據,判斷能不能在誤差不超過0.05的情況下,認為B機器生產的產品比A機器生產的產品好;

A生產的產品

B生產的產品

合計

良好以上(含良好)

合格

合計

(3)已知優秀等級產品的利潤為12元/件,良好等級產品的利潤為10元/件,合格等級產品的利潤為5元/件,A機器每生產10萬件的成本為20萬元,B機器每生產10萬件的成本為30萬元;該工廠決定:按樣本數據測算,兩種機器分別生產10萬件產品,若收益之差達到5萬元以上,則淘汰收益低的機器,若收益之差不超過5萬元,則仍然保留原來的兩臺機器.你認為該工廠會仍然保留原來的兩臺機器嗎?

【答案】(1)見解析;(2)見解析;(3)見解析

【解析】分析:(1)先計算出樣本中優秀的產品有2個來自A機器,3個來自B 機器,再寫出x的分布列和期望. (2)先完成2×2列聯表,再求出作出判斷.(3)先計算出A、B機器每生產10萬件的利潤,再下結論.

詳解:(1)從莖葉圖可以知道,樣本中優秀的產品有2個來自A機器,3個來自B 機器;

所以的可能取值為

,,

的分布列為:

0

1

2

0.1

0.6

0.3

所以

(2)由已知可得,列聯表為

A生產的產品

B生產的產品

合計

良好以上

6

12

18

合格

14

8

22

合計

20

20

40

,

所以不能在誤差不超過0.05的情況下,認為產品等級是否達到良好以上與生產產品的機器有關

(3)A機器每生產10萬件的利潤為萬元,

B機器每生產10萬件的利潤為萬元,

所以,

所以該工廠不會仍然保留原來的兩臺機器,應該會賣掉A機器,同時購買一臺B機器

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】近年來,我國自主研發的長征系列火箭的頻頻發射成功,標志著我國在該領域已逐步達到世界一流水平.火箭推進劑的質量為,去除推進劑后的火箭有效載荷質量為,火箭的飛行速度為,初始速度為,已知其關系式為齊奧爾科夫斯基公式:,其中是火箭發動機噴流相對火箭的速度,假設,,,是以為底的自然對數,,.

1)如果希望火箭飛行速度分別達到第一宇宙速度、第二宇宙速度、第三宇宙速度時,求的值(精確到小數點后面1位).

2)如果希望達到,但火箭起飛質量最大值為,請問的最小值為多少(精確到小數點后面1位)?由此指出其實際意義.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,且).

(Ⅰ)求函數的單調區間;

(Ⅱ)求函數上的最大值.

【答案】(Ⅰ)的單調增區間為,單調減區間為.(Ⅱ)當時, ;當時, .

【解析】試題分析】(I)利用的二階導數來研究求得函數的單調區間.(II) 由(Ⅰ)得上單調遞減,在上單調遞增,由此可知.利用導數和對分類討論求得函數在不同取值時的最大值.

試題解析】

(Ⅰ),

,則.

, ,∴上單調遞增,

從而得上單調遞增,又∵,

∴當時, ,當時, ,

因此, 的單調增區間為,單調減區間為.

(Ⅱ)由(Ⅰ)得上單調遞減,在上單調遞增,

由此可知.

,

.

,

.

∵當時, ,∴上單調遞增.

又∵,∴當時, ;當時, .

①當時, ,即,這時, ;

②當時, ,即,這時, .

綜上, 上的最大值為:當時, ;

時, .

[點睛]本小題主要考查函數的單調性,考查利用導數求最大值. 與函數零點有關的參數范圍問題,往往利用導數研究函數的單調區間和極值點,并結合特殊點,從而判斷函數的大致圖像,討論其圖象與軸的位置關系,進而確定參數的取值范圍;或通過對方程等價變形轉化為兩個函數圖象的交點問題.

型】解答
束】
22

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .

(Ⅰ) 寫出圓 的參數方程和直線的直角坐標方程;

( Ⅱ ) 設直線軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知偶函數上單調遞增,則

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,為橢圓上不與左右頂點重合的任意一點,,分別為的內心、重心,當軸時,橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,為正三角形,為線段的中點.

(Ⅰ)求證:平面;

(Ⅱ)若,求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】記焦點在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點為頂點作相似橢圓.

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線與橢圓交于兩點,且與橢圓僅有一個公共點,試判斷的面積是否為定值(為坐標原點)?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數在區間內存在極值點,且恰有唯一整數解使得,則的取值范圍是( )(其中為自然對數的底數,

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙、丙三人去某地務工,其工作受天氣影響,雨天不能出工,晴天才能出工.其計酬方式有兩種,方式一:雨天沒收入,晴天出工每天元;方式而:雨天每天元,晴天出工每天元;三人要選擇其中一種計酬方式,并打算在下個月(天)內的晴天都出工,為此三人作了一些調查,甲以去年此月的下雨天數(天)為依據作出選擇;乙和丙在分析了當地近年此月的下雨天數()的頻數分布表(見下表)后,乙以頻率最大的值為依據作出選擇,丙以的平均值為依據作出選擇.

8

9

10

11

12

13

頻數

3

1

2

0

2

1

(Ⅰ)試判斷甲、乙、丙選擇的計酬方式,并說明理由;

(Ⅱ)根據統計范圍的大小,你覺得三人中誰的依據更有指導意義?

(Ⅲ)以頻率作為概率,求未來三年中恰有兩年,此月下雨不超過天的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视