【題目】已知函數在區間
內存在極值點,且恰有唯一整數解
使得
,則
的取值范圍是( )(其中
為自然對數的底數,
)
A. B.
C. D.
科目:高中數學 來源: 題型:
【題目】某工廠有兩臺不同機器A和B生產同一種產品各10萬件,現從各自生產的產品中分別隨機抽取二十件,進行品質鑒定,鑒定成績的莖葉圖如下所示:
該產品的質量評價標準規定:鑒定成績達到的產品,質量等級為優秀;鑒定成績達到
的產品,質量等級為良好;鑒定成績達到
的產品,質量等級為合格.將這組數據的頻率視為整批產品的概率.
(1)從等級為優秀的樣本中隨機抽取兩件,記為來自B機器生產的產品數量,寫出
的分布列,并求
的數學期望;
(2)完成下列列聯表,以產品等級是否達到良好以上(含良好)為判斷依據,判斷能不能在誤差不超過0.05的情況下,認為B機器生產的產品比A機器生產的產品好;
A生產的產品 | B生產的產品 | 合計 | |
良好以上(含良好) | |||
合格 | |||
合計 |
(3)已知優秀等級產品的利潤為12元/件,良好等級產品的利潤為10元/件,合格等級產品的利潤為5元/件,A機器每生產10萬件的成本為20萬元,B機器每生產10萬件的成本為30萬元;該工廠決定:按樣本數據測算,兩種機器分別生產10萬件產品,若收益之差達到5萬元以上,則淘汰收益低的機器,若收益之差不超過5萬元,則仍然保留原來的兩臺機器.你認為該工廠會仍然保留原來的兩臺機器嗎?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后,第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學在平昌冬奧會開幕后的第二天,從全校學生中隨機抽取了120名學生,對是否收看平昌冬奧會開幕式情況進行了問卷調查,統計數據如下:
(Ⅰ)根據上表說明,能否有的把握認為,收看開幕式與性別有關?
(Ⅱ)現從參與問卷調查且收看了開幕式的學生中,采用按性別分層抽樣的方法,選取12人參加2022年北京冬奧會志愿者宣傳活動.
(ⅰ)問男、女學生各選取了多少人?
(ⅱ)若從這12人中隨機選取3人到校廣播站開展冬奧會及冰雪項目的宣傳介紹,設選取的3人中女生人數為,寫出
的分布列,并求
.
收看 | 沒收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
附:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數).以坐標原點為極點,
軸的非負半軸為極軸且取相同的單位長度建立極坐標系,圓
的極坐標方程為
.
(1)求直線的普通方程與圓
的直角坐標方程;
(2)設動點在圓
上,動線段
的中點
的軌跡為
,
與直線
交點為
,且直角坐標系中,
點的橫坐標大于
點的橫坐標,求點
的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的長軸長為
,且橢圓
與圓
:
的公共弦長為
.
(1)求橢圓的方程.
(2)經過原點作直線(不與坐標軸重合)交橢圓于
,
兩點,
軸于點
,點
在橢圓
上,且
,求證:
,
,
三點共線..
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為拋物線
:
的焦點,過
的動直線交拋物線
于
,
兩點.當直線與
軸垂直時,
.
(1)求拋物線的方程;
(2)設直線的斜率為1且與拋物線的準線
相交于點
,拋物線
上存在點
使得直線
,
,
的斜率成等差數列,求點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,
,
分別是其左、右焦點,且過點
.
(1)求橢圓的標準方程;
(2)若在直線上任取一點
,從點
向
的外接圓引一條切線,切點為
.問是否存在點
,恒有
?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com