【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點,Q為A1B1上任意一點,E、F為CD上任意兩點,且EF的長為定值,則下面的四個值中不為定值的是( )
A.點P到平面QEF的距離
B.直線PQ與平面PEF所成的角
C.三棱錐P﹣QEF的體積
D.二面角P﹣EF﹣Q的大小
【答案】B
【解析】
A選項:根據和平面
都是固定的,得到
到平面
的距離也是固定的.
B選項:因為是動點,
也是動點,得到直線
與平面
所成的角不是定值.
C選項:因為的面積是定值,高也是定值,得到三棱錐體積也是定值.
D選項:因為,
為
上任意一點,
、
為
上任意兩點,所以二面角
的大小為定值.
A選項:因為平面也是平面
,既然
和平面
都是固定的,所以
到平面
的距離也是固定的,故A為定值.
B選項:因為是動點,
也是動點,推不出定值結論,所以B不是定值.
C選項:因長為定值,所以
的面積是定值,再根據選項A知:
到平面
的距離也是定值,所以C是定值.
D選項:因為,
為
上任意一點,
、
為
上任意兩點,所以二面角
的大小為定值,所以D是定值.
故選:B
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,橢圓
:
的上頂點為
,左、右焦點分別為
,
,直線
的斜率為
,點
,
在橢圓
上,其中
是橢圓上一動點,
點坐標為
.
(1)求橢圓的標準方程;
(2)作直線與
軸垂直,交橢圓于
,
兩點(
,
兩點均不與
點重合),直線
,
與
軸分別交于點
,
,試求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法:①若線性回歸方程為,則當變量
增加一個單位時,
一定增加3個單位;②將一組數據中的每個數據都加上同一個常數后,方差不會改變;③線性回歸直線方程
必過點
;④抽簽法屬于簡單隨機抽樣;其中錯誤的說法是( )
A.①③B.②③④C.①D.①②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知極坐標系的極點在平面直角坐標系的原點處,極軸與
軸的正半軸重合,且長度單位相同;曲線
的方程是
,直線
的參數方程為
(
為參數,
),設
, 直線
與曲線
交于
兩點.
(1)當時,求
的長度;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線2x﹣y﹣1=0與直線x﹣2y+1=0交于點P.
(1)求過點P且垂直于直線3x+4y﹣15=0的直線l1的方程;(結果寫成直線方程的一般式)
(2)求過點P并且在兩坐標軸上截距相等的直線l2方程(結果寫成直線方程的一般式)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若存在一個實數,使得
成立,則稱
為函數
的一個不動點,設函數
(
,
為自然對數的底數),定義在
上的連續函數
滿足
,且當
時,
.若存在
,且
為函數
的一個不動點,則實數
的取值范圍為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年4月,甲乙兩校的學生參加了某考試機構舉行的大聯考,現從這兩校參加考試的學生數學成績在100分及以上的試卷中用系統抽樣的方法各抽取了20份試卷,并將這40份試卷的得分制作成如下的莖葉圖.
(1)試通過莖葉圖比較這40份試卷的兩校學生數學成績的中位數;
(2)若把數學成績不低于135分的記作數學成績優秀,根據莖葉圖中的數據,判斷是否有90的把握認為數學成績在100分及以上的學生中數學成績是否優秀與所在學校有關;
(3)若從這40名學生中選取數學成績在的學生,用分層抽樣的方式從甲乙兩校中抽取5人,再從這5人中隨機抽取3人分析其失分原因,求這3人中恰有2人是乙校學生的概率.
參考公式與臨界值表:,其中
.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的四個頂點圍成的四邊形的面積為
,原點到直線
的距離為
.
(1)求橢圓的方程;
(2)已知定點,是否存在過
的直線
,使
與橢圓
交于
,
兩點,且以
為直徑的圓過橢圓
的左頂點?若存在,求出
的方程:若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com