分析:(Ⅰ)由an,bn,an+1成等差數列,bn,an+1,bn+1成等比數列得關系式2bn=an+an+1,an+12=bn•bn+1
把a1=2,b1=4循環代入上面兩個式子可求a2,a3,a4和b2,b3,b4,并由此猜測出{an},{bn}的通項公式;
(Ⅱ)利用數學歸納法加以證明;
(Ⅲ)當n=1時直接驗證,當n大于等于2時放縮后利用裂項相消法證明.
解答:(Ⅰ)解:由已知得2b
n=a
n+a
n+1,a
n+12=b
n•b
n+1.
又a
1=2,b
1=4,
由此可得a
2=6,a
3=12,a
4=20,b
2=9,b
3=16,b
4=25.
猜測a
n=n(n+1),b
n(n+1)
2.
(Ⅱ)用數學歸納法證明:
①當n=1時,由(Ⅰ)可得結論成立.
②假設當n=k時,結論成立,即a
k=k(k+1),b
k=(k+1)
2.
那么當n=k+1時,a
k+1=2b
k-a
k=2(k+1)
2-k(k+1)=(k+1)(k+2),
b
k+1=
=(k+2)
2.
所以當n=k+1時,結論也成立.
由①②可知a
n=n(n+1),b
n=(n+1)
2對一切正整數都成立.
(Ⅲ)證明:
=
<
.
n≥2時,由(Ⅰ)知a
n+b
n=(n+1)(2n+1)>2(n+1)n.
故
+
+…+
<
+
[
+
+…+
]
=
+
(
-
+
-
+…+
-
)
=
+
(
-
)<
+
=
.
點評:本題考查了等差數列和等比數列的通項公式,是數列與不等式的綜合題,考查了數學歸納法,訓練了放縮法及列項相消法證明不等式,是中檔題.