【題目】已知三棱柱中,
,
,
,
.
求證:面
面
;
若
,在線段
上是否存在一點
,使二面角
的平面角的余弦值為
?若存在,確定點
的位置;若不存在,說明理由
【答案】(1)見解析;(2)見解析
【解析】
由
,可得四邊形
為菱形,則
,又
,利用線面垂直的判定可得
平面
,得到
,結合
,即可證明
平面
,從而可證明面
面
;
以C為坐標原點,分別以CA,CB所在直線為x,y軸建立空間直角坐標系,設在線段AC上存在一點P,滿足
,使得二面角
的余弦值為
,利用二面角
的余弦值為
,可求得
的值,從而得到答案。
證明:如圖,
,
四邊形
為菱形,
連接,則
,又
,且
,
平面
,則
,
又,即
,
平面
,
而平面
,
面
面
;
解:以C為坐標原點,分別以CA,CB所在直線為x,y軸建立如圖所示的空間直角坐標系,
,
,
,
0,
,
2,
,
0,
,
0,
設在線段上存在一點
,滿足
,使得二面角
的余弦值為
.
則.
0,
,
,
,
,
.
設平面的一個法向量為
,
由,取
,得
;
平面的一個法向量為
.
由,
解得:,或
,
因為,所以
.
故在線段上存在一點
,滿足
,使二面角
的余弦值為
.
科目:高中數學 來源: 題型:
【題目】如圖,設銳角的外接圓的半徑為
,在
內取外接圓的同心圓
,其半徑為
,從圓
上任取一點
,作
于點
,
于點
,
于點
.
(1)求證:的面積為定值;
(2)猜想:當為任意三角形、同心圓
為任意同心圓時,結論是否成立(不要求證明)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,D,E,F分別為棱PC,AC,AB的中點,PA⊥平面ABC,∠ABC=90°,AB=PA=6,BC=8,則( )
A.三棱錐D-BEF的體積為6
B.直線PB與直線DF垂直
C.平面DEF截三棱錐P-ABC所得的截面面積為12
D.點P與點A到平面BDE的距離相等
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】田忌賽馬是史記
中記載的一個故事,說的是齊國將軍田忌經常與齊國眾公子賽馬,孫臏發也們的馬腳力都差不多,都分為上、中、下三等
于是孫臏給田忌將軍制定了一個必勝策略:比賽即將開始時,他讓田忌用下等馬對戰公子們的上等馬,用上等馬對戰公子們的中等馬,用中等馬對戰公子們的下等馬,從而使田忌贏得公子們許多賭注
假設田忌的各等級馬與某公子的各等級馬進行一場比賽獲勝的概率如表所示:
田忌的馬 | 上等馬 | 中等馬 | 下等馬 |
上等馬 | 1 | ||
中等馬 | |||
下等馬 | 0 |
比賽規則規定:一次比由三場賽馬組成,每場由公子和田忌各出一匹馬出騫,結果只有勝和負兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.
如果按孫臏的策略比賽一次,求田忌獲勝的概率;
如果比賽約定,只能同等級馬對戰,每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,將橢圓上每一點的橫坐標保持不變,縱坐標變為原來的一半,得曲線C,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為
.
寫出曲線C的普通方程和直線l的直角坐標方程;
已知點
且直線l與曲線C交于A、B兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大型商場的空調在1月到5月的銷售量與月份相關,得到的統計數據如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷量 | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經分析發現1月到5月的銷售量可用線性回歸模型擬合該商場空調的月銷量(百件)與月份
之間的相關關系.請用最小二乘法求
關于
的線性回歸方程
,并預測6月份該商場空調的銷售量;
(2)若該商場的營銷部對空調進行新一輪促銷,對7月到12月有購買空調意愿的顧客進行問卷調查.假設該地擬購買空調的消費群體十分龐大,經過營銷部調研機構對其中的500名顧客進行了一個抽樣調查,得到如下一份頻數表:
有購買意愿對應的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數 | 60 | 80 | 120 | 130 | 80 | 30 |
現采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.
參考公式與數據:線性回歸方程,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然對數的底數,e≈2.718…).
(1)求函數f(x)的極值;
(2)若函數y=f(x)g(x)在區間[1,2]上單調遞增,求實數a的取值范圍;
(3)若函數h(x)=在區間(0,+∞)上既存在極大值又存在極小值,并且函數h(x)的極大值小于整數b,求b的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com