【題目】已知函數f(x)= sin(x+
)﹣
cos(x+
),若存在x1 , x2 , x3 , …,xn滿足0≤x1<x2<x3<…<xn≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…
,則n的最小值為( )
A.6
B.10
C.8
D.12
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC= CP=2,D是CP中點,將△PAD沿AD折起,使得PD⊥面ABCD;
(Ⅰ)求證:平面PAD⊥平面PCD;
(Ⅱ)若E是PC的中點.求三棱錐A﹣PEB的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某社區居民購買水果和牛奶的年支出費用與購買食品的年支出費用的關系,隨機調查了該社區5戶家庭,得到如下統計數據表:
購買食品的年支出費用x(萬元) | 2.09 | 2.15 | 2.50 | 2.84 | 2.92 |
購買水果和牛奶的年支出費用y(萬元) | 1.25 | 1.30 | 1.50 | 1.70 | 1.75 |
根據上表可得回歸直線方程 ,其中
,據此估計,該社區一戶購買食品的年支出費用為3.00萬元的家庭購買水果和牛奶的年支出費用約為( )
A.1.79萬元
B.2.55萬元
C.1.91萬元
D.1.94萬元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 ,函數
.
(1)當 時,解不等式
;
(2)若關于 的方程
的解集中恰好有一個元素,求
的取值范圍;
(3)設 ,若對任意
,函數
在區間
上的最大值與最小值的差不超過1,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是數列
的前n項和,
,且
.
(1)求數列的通項公式;
(2)對于正整數,已知
成等差數列,求正整數
的值;
(3)設數列前n項和是
,且滿足:對任意的正整數n,都有等式
成立.求滿足等式
的所有正整數n.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知的頂點坐標為
,
,
, 點P的橫坐標為14,且
,點
是邊
上一點,且
.
(1)求實數的值及點
、
的坐標;
(2)若為線段
(含端點)上的一個動點,試求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,函數
.
(1)當時,解不等式
;
(2)若關于的方程
的解集中恰好有一個元素,求
的取值范圍;
(3)設,若對任意
,函數
在區間
上的最大值與最小值的差不超過1,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com