【題目】數集M滿足條件:若,則
.
(1)若,求集合M中一定存在的元素;
(2)集合M內的元素能否只有一個?請說明理由;
(3)請寫出集合M中的元素個數的所有可能值,并說明理由.
【答案】(1)集合M中一定含有的元素為:;(2)不能,理由見解析;(3)M中的元素個數為4
,
,理由見解析.
【解析】
(1)令,利用
,則
依次類推即可得出集合M中一定存在的元素;
(2)由題意利用無解,可得出集合M中不能只有一個元素;
(3)利用已知條件,則
,以此類推得出集合M中出現4個元素
,
,
,
,且互不相等,當
取不同的值時,集合M 中將出現不同組別的四個元素,所以可得出集合M中元素的個數為4
,
.
(1)由,令
,則由題意關系式可得:
,
,
,
而,所以集合M中一定存在的元素有:
.
(2)不,理由如下:
假設M中只有一個元素a,則由,化簡得
,無解,所以M中不可能只有一個元素.
(3)M中的元素個數為4,
,理由如下:
由已知條件,則
,以此類推可得集合M中可能出現4個元素分別為:
,
,
,
,由(2)得
,
若,化簡得
,無解,故
;
若,化簡得
,無解,故
;
若,化簡得
,無解,故
;
若,化簡得
,無解,故
;
若,化簡得
,無解,故
;
綜上可得:,所以集合M一定存在的元素有
,當
取不同的值時,集合M 中將出現不同組別的4個元素,所以可得出集合M中元素的個數為4
,
.
科目:高中數學 來源: 題型:
【題目】若定義在D上的函數f(x)滿足:對任意x∈D,存在常數M>0,都有-M<f(x)<M成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的上界。
(Ⅰ)判斷函數f(x)=-2x+2,x∈[0,2]是否是有界函數,請說明理由;
(Ⅱ)若函數f(x)=1++
,x∈[0,+∞)是以3為上界的有界函數,求實數a的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在原點,焦點在x軸上的橢圓C的離心率為,且經過點M(1,
),過點P(2,1)的直線l與橢圓C相交于不同的兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,滿足?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若實數滿足
,則稱
比
接近
(1)若4比接近0,求
的取值范圍;
(2)對于任意的兩個不等正數,求證:
比
接近
;
(3)若對于任意的非零實數,實數
比
接近
,求
的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數集(
,
)具有性質P;對任意的i,j(
),
與
兩數中至少有一個屬于A.
(1)分別判斷數集與
是否具有性質P,并說明理由;
(2)證明:,且
;
(3)當時,若
,求集合A.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(a∈R).
(1)若曲線y=f(x)在x=e處切線的斜率為﹣1,求此切線方程;
(2)若f(x)有兩個極值點x1,x2,求a的取值范圍,并證明:x1x2>x1+x2.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com