【題目】已知數列{an}的前n項和為Sn , 通項公式為 .
(Ⅰ)計算f(1),f(2),f(3)的值;
(Ⅱ)比較f(n)與1的大小,并用數學歸納法證明你的結論.
【答案】解:(Ⅰ)由已知 ,
,
;
(Ⅱ)由(Ⅰ)知f(1)>1,f(2)>1;當n≥3時,猜想:f(n)<1.
下面用數學歸納法證明:
①由(Ⅰ)當n=3時,f(n)<1;
②假設n=k(k≥3)時,f(n)<1,即 ,那么
=
=
=
,
所以當n=k+1時,f(n)<1也成立.由(1)和(2)知,當n≥3時,f(n)<1.
所以當n=1,和n=2時,f(n)>1;當n≥3時,f(n)<1
【解析】(1)此問根據通項公式計算出前n項的和.當n=1時,f(1)=s2;當n=2時,f(2)=s4﹣s1=a2+a3;當n=3時,f(3)=s6﹣s2 . (2)當n=1時, ≥1.當n≥2時,f(n)中沒有a1 , 因此都小于1.
【考點精析】認真審題,首先需要了解數列的通項公式(如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式).
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率e=
,右頂點、上頂點分別為A,B,直線AB被圓O:x2+y2=1截得的弦長為
(1)求橢圓C的方程;
(2)設過點B且斜率為k的動直線l與橢圓C的另一個交點為M, =λ(
),若點N在圓O上,求正實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:mx2+3my2=1(m>0)的長軸長為 ,O為坐標原點.
(1)求橢圓C的方程和離心率.
(2)設點A(3,0),動點B在y軸上,動點P在橢圓C上,且點P在y軸的右側.若BA=BP,求四邊形OPAB面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數,得下面柱狀圖.
記表示
臺機器在三年使用期內需更換的易損零件數,
表示
臺機器在購買易損零件上所需的費用(單位:元),
表示購機的同時購買的易損零件數.
(1)若,求
與
的函數解析式;
(2)若要求 “需更換的易損零件數不大于”的頻率不小于
,求
的最小值;
(3)假設這臺機器在購機的同時每臺都購買
個易損零件,或每臺都購買
個易損零件,分別計算這
臺機器在購買易損零件上所需費用的平均數,以此作為決策依據,購買
臺機器的同時應購買
個還是
個易損零件?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos2x+2sin2x+2sinx.
(Ⅰ)將函數f(2x)的圖象向右平移 個單位得到函數g(x)的圖象,若x∈[
,
],求函數g(x)的值域;
(Ⅱ)已知a,b,c分別為△ABC中角A,B,C的對邊,且滿足f(A)= +1,A∈(0,
),a=2
,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在邊長為4的正三角形ABC中,D,E,F分別為各邊的中點,G,H分別為DE,AF的中點,將沿DE,EF,DF折成正四面體
,則在此正四面體中,下列說法正確的是______.
異面直線PG與DH所成的角的余弦值為
;
;
與PD所成的角為
;
與EF所成角為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知P是直線上的一個動點,圓Q的方程為:
設以線段PQ為直徑的圓E與圓Q交于C,D兩點.
證明:PC,PD均與圓Q相切;
當
時,求點P的坐標;
求線段CD長度的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com