【題目】2022年北京冬奧運動會即第24屆冬季奧林匹克運動會將在2022年2月4日至2月20日在北京和張家口舉行,某研究機構為了了解大學生對冰壺運動的興趣,隨機從某大學生中抽取了100人進行調查,經統計男生與女生的人數比為,男生中有20人表示對冰壺運動有興趣,女生中有15人對冰壺運動沒有興趣.
(1)完成列聯表,并判斷能否有
把握認為“對冰壺運動是否有興趣與性別有關”?
有興趣 | 沒有興趣 | 合計 | |
男 | 20 | ||
女 | 15 | ||
合計 | 100 |
(2)用分層抽樣的方法從樣本中對冰壺運動有興趣的學生中抽取6人,求抽取的男生和女生分別為多少人?若從這6人中選取兩人作為冰壺運動的宣傳員,求選取的2人中恰好有1位男生和1位女生的概率.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
【答案】(1)填表見解析,有把握認為“對冰壺運動是否有興趣與性別有關”(2)抽取的男生數、女生數分別為:2,4,選取的2人中恰好有1位男生和1位女生的概率為
【解析】
(1)先得2×2列聯表,在根據表中數據計算,結合臨界值表可得到結論;
(2)對冰壺運動有興趣的學生共有60人,從中抽取6人,抽取的男生數,女生數分別為:,
.再用列舉法得到從6中選取2人的基本事件和恰好有1位男生和1位女生的基本事件,用古典概型概率公式可得.
(1)根據題意得如下列聯表:
有興趣 | 沒有興趣 | 合計 | |
男 | 20 | 25 | 45 |
女 | 40 | 15 | 55 |
合計 | 60 | 40 | 100 |
所以
所以有把握認為“對冰壺運動是否有興趣與性別有關”,
(2)對冰壺運動有興趣的學生共60人,從中抽取6人,抽取的男生數、女生數分別為:
,
.
記2名男生為,
女生為
,
,
,
,則從中選取2人的基本事件
為:,
,
,
,
,
,
,
,
,
,
,
,
,
,
共15個,
其中含有1男1女的基本事件為:,
,
,
,
,
,
,
共8個
記“對冰壺運動有興趣的學生中抽取6人做宣傳員,恰好一男一女”的事件為,則
,
所以選取的2人中恰好有1位男生和1位女生的概率為.
科目:高中數學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,已知直線
的參數方程是
(m>0,t為參數),曲線
的極坐標方程為
.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)若直線與
軸交于點
,與曲線
交于點
,且
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】按照國家質量標準:某種工業產品的質量指標值落在[100,120)內,則為合格品,否則為不合格品.某企業有甲乙兩套設備生產這種產品,為了檢測這兩套設備的生產質量情況,隨機從兩套設備生產的大量產品中各抽取了50件產品作為樣本對規定的質量指標值進行檢測.表1是甲套設備的樣本頻數分布表,圖1是乙套設備的樣本頻率分布直方圖.
質量指標值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數 | 1 | 4 | 19 | 20 | 5 | 1 |
表1:甲套設備的樣本頻數分布表
(1)將頻率視為概率,若乙套設備生產了5000件產品,則其中合格品約有多少件?
(2)填寫下面2×2列聯表,并根據列聯表判斷是否有95%的把握認為這種產品的質量指標值與甲乙兩套設備的選擇有關:
甲套設備 | 乙套設備 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(3)根據表和圖,對甲、乙兩套設備的優劣進行比較.參考公式及數據:x2=
P(Х2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線
的參數方程為
(
為參數,
),已知直線
的方程為
.
(1)設是曲線
上的一個動點,當
時,求點
到直線
的距離的最小值;
(2)若曲線上的所有點均在直線
的右下方,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
’(
為參數).以坐標原點為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求和
的直角坐標方程;
(2)已知直線與
軸交于點
,且與曲線
交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎.每次抽獎都是從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數為,求
的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com