精英家教網 > 高中數學 > 題目詳情

從裝有大小相同的2個紅球和6個白球的袋子中,每摸出2個球為一次試驗,直到摸出的球中有紅球(不放回),則試驗結束.
(Ⅰ)求第一次試驗恰摸到一個紅球和一個白球概率;
(Ⅱ)記試驗次數為,求的分布列及數學期望

(1)
(2)X的分布列為

X
1
2
3
4
P




 

解析試題分析:.解:(I)               4分
(II);    ;
; ;
X的分布列為

X
1
2
3
4
P




12分
      14分
考點:古典概型
點評:主要是考查了分布列的求解以及古典概型概率的公式的綜合運用,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

一個盒子中裝有4個編號依次為1、2、3、4的球,這4個球除號碼外完全相同,先從盒子中隨機取一個球,該球的編號為X,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為Y
(1)列出所有可能結果。 
(2)求事件A=“取出球的號碼之和小于4”的概率。
(3)求事件B=“編號X<Y”的概率

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

中央電視臺星光大道某期節目中,有5位實力均等的選手參加比賽,經過四輪比賽決出周冠軍(每一輪比賽淘汰l位選手).
(1)求甲、乙兩位選手都進入第三輪比賽的概率;
(2)求甲選手在第三輪被淘汰的的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

不透明的袋中有8張大小和形狀完全相同的卡片,卡片上分別寫有1,1,2,2,3,3,,.現 從中任取3張卡片,假設每張卡片被取出的可能性相同.
(I)求取出的三張卡片中至少有一張字母卡片的概率;
(Ⅱ)設表示三張卡片上的數字之和.當三張卡片中含有字母時,則約定:有一個字母和二個相同數字時為這二個數字之和,否則,求的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

哈爾濱市第一次聯考后,某校對甲、乙兩個文科班的數學考試成績進行分析,規定:大于或等于120分為優秀,120分以下為非優秀.統計成績后,得到如下的列聯表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優秀的概率為

 
優秀
非優秀
合計
甲班
10
 
 
乙班
 
30
 
    合計
 
 
110
(1)請完成上面的列聯表;
(2)根據列聯表的數據,若按99.9%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優秀的學生中抽取一人:把甲班優秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現的點數之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知甲盒內有大小相同的1個紅球和3個黑球,乙盒內有大小相同的2個紅球和4個黑球.現從甲、乙兩個盒內各任取2個球.
(1)求取出的4個球均為黑球的概率;
(2)求取出的4個球中恰有1個紅球的概率;
(3)設為取出的4個球中紅球的個數,求的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲、乙兩人在罰球線互不影響地投球,命中的概率分別為,投中得1分,投不中得0分.
(1)甲、乙兩人在罰球線各投球一次,求兩人得分之和的數學期望;
(2)甲、乙兩人在罰球線各投球二次,求甲恰好比乙多得分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲有一個箱子,里面放有x個紅球,y個白球(x,y≥0,且x+y=4);乙有一個箱子,里面放有2個紅球,1個白球,1個黃球.現在甲從箱子里任取2個球,乙從箱子里任取1個球.若取出的3個球顏色全不相同,則甲獲勝.
(1)試問甲如何安排箱子里兩種顏色球的個數,才能使自己獲勝的概率最大?
(2)在(1)的條件下,求取出的3個球中紅球個數的期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一個袋中裝有大小相同的黑球和白球共9個,從中任取3個球,記隨機變量為取出3球中白球的個數,已知
(Ⅰ)求袋中白球的個數;
(Ⅱ)求隨機變量的分布列及其數學期望.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视