精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

(1)若關于的方程有兩個不同的實數根,求證:;

(2)若存在使得成立,求實數的取值范圍.(其中為自然對數的底數,

【答案】(1)見解析; (2).

【解析】

(1)設,將方程有兩個不同的實數根”轉化為“函數有兩個不同的交點”,進而轉化為求的最值問題,得出m的取值范圍,問題即可解決。(2)首先“存在使得成立”的問題轉化為“存在使得成立”,從而轉化為求的最大值問題,利用導數研究其單調性并求其最值,即可解決問題。

(1)若方程有兩個不同的實數根,即有兩個不同的實數根,

,即函數有兩個不同的交點,

,

,解得:,令,解得,

上遞減,在上遞増,

,故,

.

(2)若存在使得成立,

即存在使得成立,

,則

易得,

,解得:,令,解得

遞減,在遞增,

的最大值是,

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形, 垂直于底面, ,點為線段(不含端點)上一點.

(1)當是線段的中點時,求與平面所成角的正弦值;

(2)已知二面角的正弦值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,天津之眼,全稱天津永樂橋摩天輪,是世界上唯一一個橋上瞰景摩天輪,是天津的地標之一 .永樂橋分上下兩層,上層橋面預留了一個長方形開口,供摩天輪輪盤穿過,摩天輪的直徑為110米,外掛裝48個透明座艙,在電力的驅動下逆時針勻速旋轉,轉一圈大約需要30分鐘.現將某一個透明座艙視為摩天輪上的一個點,當點到達最高點時,距離下層橋面的高度為113米,點在最低點處開始計時.

1)試確定在時刻 (單位:分鐘)時點距離下層橋面的高度 (單位:)

2)若轉動一周內某一個摩天輪透明座艙在上下兩層橋面之間的運行時間大約為5分鐘,問上層橋面距離下層橋面的高度約為多少米?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司的電子新產品未上市時,原定每件售價100元,經過市場調研發現,該電子新產品市場潛力很大,該公司決定從第一周開始銷售時,該電子產品每件售價比原定售價每周漲價4元,5周后開始保持120元的價格平穩銷售,10周后由于市場競爭日益激烈,每周降價2元,直到15周結束,該產品不再銷售.

(Ⅰ)求售價(單位:元)與周次)之間的函數關系式;

(Ⅱ)若此電子產品的單件成本(單位:元)與周次之間的關系式為,,,試問:此電子產品第幾周的單件銷售利潤(銷售利潤售價成本)最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在棱長為1的正方體中,點P在線段上運動,給出以下四個命題:

①異面直線所成的角為定值;

②二面角的大小為定值;

③三棱錐的體積為定值;

其中真命題的個數為(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,E、F分別為PC、BD的中點,側面PAD⊥底面ABCD.

(1)求證:EF∥平面PAD;

(2)若EF⊥PC,求證:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】平面四邊形中, , 為等邊三角形,現將沿翻折得到四面體,點分別為的中點.

(Ⅰ)求證:四邊形為矩形;

(Ⅱ)當平面平面時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是奇函數

()求實數的值;

()用定義證明函數上的單調性;

()若對任意的,不等式恒成立,求實數的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下面四個命題:

在定義域上單調遞增;

②若銳角,滿足,則;

是定義在上的偶函數,且在上是增函數,若,則;

④函數的一個對稱中心是;

其中真命題的序號為______.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视