精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,E、F分別為PC、BD的中點,側面PAD⊥底面ABCD.

(1)求證:EF∥平面PAD;

(2)若EF⊥PC,求證:平面PAB⊥平面PCD.

【答案】(1)見解析;(2)見解析

【解析】分析:(1)連結,則的中點,的中點,得,利用線面平行的判定定理,即可證得平面

(2)由(1)可得,,又由,平面為正方形,得平面,所以CDPA,從而得到平面,利用面面垂直的判定定理,即可證得平面平面

詳解:(1)連結,則的中點,的中點,

故在中,,

因為平面平面,所以平面

(2)由(1)可得,EF//PA,又EF⊥PC

所以PA⊥PC

因為平面平面,平面ABCD為正方形

所以,平面,所以CD⊥PA

,所以PA⊥平面PDC

平面,所以平面平面

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】函數y=loga(x+3)﹣1(a>0,且a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中m,n均大于0,則 的最小值為( 。
A.2
B.4
C.8
D.16

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB= ,AF=1,G為線段AD上的任意一點.
(1)若M是線段EF的中點,證明:平面AMG⊥平面BDF;
(2)若N為線段EF上任意一點,設直線AN與平面ABF,平面BDF所成角分別是α,β,求 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在半徑為R的圓內,作內接等腰△ABC,當底邊上高h∈(0,t]時,△ABC的面積取得最大值 ,則t的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直角坐標 中,設橢圓 的左右兩個焦點分別為 ,過右焦點 且與 軸垂直的直線 與橢圓 相交,其中一個交點為 .

(1)求橢圓 的方程;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從參加高一年級期中考試的學生中隨機抽出60名學生,將其物理成績(均為整數)分成六段[40,50),[50,60),,[90,100]后得到如圖所示的頻率分布直方圖觀察圖形的信息,回答下列問題:

(1)求分數在[70,80)內的頻率,并補全這個頻率分布直方圖;

(2)統計方法中,同一組數據常用該組區間的中點值作為代表,據此估計本次考試中的平均分.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .
(1) 時,證明:
(2)當 時,直線 和曲線 切于點 ,求實數 的值;
(3)當 時,不等式 恒成立,求實數 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體中,過對角線的一個平面交于點,交.

①四邊形一定是平行四邊形;

②四邊形有可能是正方形;

③四邊形在底面內的投影一定是正方形;

④四邊形有可能垂直于平面

以上結論正確的為_______________.(寫出所有正確結論的編號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 ,右頂點為 ,離心率為 ,直線 與橢圓 相交于不同的兩點 , ,過 的中點 作垂直于 的直線 ,設 與橢圓 相交于不同的兩點 , ,且 的中點為
(Ⅰ)求橢圓 的方程;
(Ⅱ)設原點 到直線 的距離為 ,求 的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视