【題目】某校從高一年級隨機抽取了名學生第一學期的數學學期綜合成績和物理學期綜合成績.
列表如下:
學生序號 | ||||||||||
數學學期綜合成績 | ||||||||||
物理學期綜合成績 | ||||||||||
學生序號 | ||||||||||
數學學期綜合成績 | ||||||||||
物理學期綜合成績 |
規定:綜合成績不低于分者為優秀,低于
分為不優秀.
對優秀賦分,對不優秀賦分
,從
名學生中隨機抽取
名學生,若用
表示這
名學生兩科賦分的和,求
的分布列和數學期望;
根據這次抽查數據,列出列聯表,能否在犯錯誤的概率不超過
的前提下認為物理成績與數學成績有關?
附: ,其中
科目:高中數學 來源: 題型:
【題目】某職稱晉級評定機構對參加某次專業技術考試的100人的成績進行了統計,繪制了頻率分布直方圖(如圖所示),規定80分及以上者晉級成功,否則晉級失。M分為100分).
(1)求圖中的值;
(2)估計該次考試的平均分(同一組中的數據用該組的區間中點值代表);
(3)根據已知條件完成下面列聯表,并判斷能否有85%的把握認為“晉級成功”與性別有關?
(參考公式: ,其中
)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,曲線的極坐標方程為
,曲線
的極坐標方程為
,以極點
為坐標原點,極軸為
的正半軸建立平面直角坐標系
.
(1)求和
的參數方程;
(2)已知射線,將
逆時針旋轉
得到
,且
與
交于
兩點,
與
交于
兩點,求
取得最大值時點
的極坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+px+q與函數y=f(f(f(x)))有一個相同的零點,則f(0)與f(1)( )
A.均為正值
B.均為負值
C.一正一負
D.至少有一個等于0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知☉O:x2+y2=1和定點A(2,1),由☉O外一點P(a,b)向☉O引切線PQ,切點為Q,且滿足|PQ|=|PA|.
(1)求實數a,b間滿足的等量關系.
(2)求線段PQ長的最小值.
(3)若以P為圓心所作的☉P與☉O有公共點,試求半徑取最小值時☉P的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體中,已知四邊形
為矩形,
為平行四邊形,點
在平面
內的射影恰好為點
,
的中點為
,
的中點為
,且
.
(1)求證:平面平面
;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某單位的職工食堂中,食堂每天以元/個的價格從面包店購進面包,然后以
元/個的價格出售.如果當天賣不完,剩下的面包以
元/個的價格賣給飼料加工廠.根據以往統計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了90個面包,以
(單位:個,
)表示面包的需求量,
(單位:元)表示利潤.
(Ⅰ)求關于
的函數解析式;
(Ⅱ)根據直方圖估計利潤不少于
元的概率;
(III)在直方圖的需求量分組中,以各組的區間中點值代表該組的各個值,并以需求量落入該區間的頻率作為需求量取該區間中間值的概率(例如:若需求量,則取
,且
的概率等于需求量落入
的頻率),求
的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com