精英家教網 > 高中數學 > 題目詳情

已知圓心為點的圓與直線相切.

(1)求圓的標準方程;
(2)對于圓上的任一點,是否存在定點 (不同于原點)使得恒為常數?若存在,求出點的坐標;若不存在,請說明理由.

(1)圓C的標準方程為;(2)存在滿足條件的點A,且

解析試題分析:(1)由點C到直線的距離求出圓的半徑,然后可得圓的標準方程;(2)設滿足,設定點A,=,即,兩方程聯立解得,此時A點坐標為.
試題解析:(1)點C到直線的距離為,.           2分
所以求圓C的標準方程為.               4分
(2)設.即
設定點A,(不同時為0),=(為常數).
                        6分
兩邊平方,整理得=0
代入后得
所以,                          9分
解得
.                               10分
考點:圓的方程、圓與直線的位置關系、定值問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知t∈R,圓C:x2+y2-2tx-2t2y+4t-4=0.
(1)若圓C的圓心在直線x-y+2=0上,求圓C的方程;
(2)圓C是否過定點?如果過定點,求出定點的坐標;如果不過定點,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知點A(-3,0),B(3,0),動點P滿足|PA|=2|PB|.
(1)若點P的軌跡為曲線C,求此曲線的方程;
(2)若點Q在直線l1xy+3=0上,直線l2經過點Q且與曲線C只有一個公共點M,求|QM|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系xOy中,曲線yx2-6x+1與坐標軸的交點都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線xya=0交于A,B兩點,且OAOB,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓經過坐標原點和點,且圓心在軸上.
(1)求圓的方程;
(2)設直線經過點,且與圓相交所得弦長為,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓的圓心在直線上,且與軸交于兩點,.
(1)求圓的方程;
(2)求過點的圓的切線方程;
(3)已知,點在圓上運動,求以,為一組鄰邊的平行四邊形的另一個頂點軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知是橢圓的右焦點;圓軸交于兩點,其中是橢圓的左焦點.

(1)求橢圓的離心率;
(2)設圓軸的正半軸的交點為,點是點關于軸的對稱點,試判斷直線與圓的位置關系;
(3)設直線與圓交于另一點,若的面積為,求橢圓的標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

求經過三點A(1,-1),B(1,4),C(4,-2)的圓的方程,并判斷與圓的位置關系。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓,
(Ⅰ)若直線過定點 (1,0),且與圓相切,求的方程;
(Ⅱ) 若圓的半徑為3,圓心在直線上,且與圓外切,求圓的方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视