【題目】已知橢圓的左右焦點分別為F1,F2,該橢圓與y軸正半軸交于點M,且△MF1F2是邊長為2的等邊三角形.
(1)求橢圓的標準方程;
(2)過點F2任作一直線交橢圓于A,B兩點,平面上有一動點P,設直線PA,PF2,PB的斜率分別為k1,k,k2,且滿足k1+k2=2k,求動點P的軌跡方程.
【答案】(1);(2)x=4.
【解析】
(1)根據橢圓的定義可得,從而可求出橢圓的方程.
(2)設過點F2的直線方程為y=(x﹣1)(當斜率存在時),設A(x1,y1),B(x2,y2),P(x0,y0),將直線與橢圓方程聯立,利用韋達定理求出兩根之和、兩根之積,用兩點表示出直線的斜率,代入k1+k2=2k,化簡即可求解;當直線斜率不存在時,驗證是否滿足求出的軌跡方程即可.
(1)由題意可知:b=|OM|,a=|MF1|=2,
所以橢圓標準方程為.
(2)①設過點F2的直線方程為y=(x﹣1)(當斜率存在時),
設A(x1,y1),B(x2,y2),P(x0,y0),
聯立方程,得到(3+4
2)x2﹣8
2x+4
2﹣12=0,
其中,
,y1=
(x1﹣1),y2=
(x2﹣1),
由k1+k2=2k得:,
通分代入得:,
即(x0﹣4)((x0﹣1)﹣y0)=0,y0=
(x0﹣1)舍去,所以x0=4,
②當直線斜率k不存在時,即為x=1,經驗證可知直線x0=4上任意一點亦滿足條件.
所以點P的軌跡的方程為x=4.
科目:高中數學 來源: 題型:
【題目】已知(m,n為常數),在
處的切線方程為
.
(Ⅰ)求的解析式并寫出定義域;
(Ⅱ)若,使得對
上恒有
成立,求實數
的取值范圍;
(Ⅲ)若有兩個不同的零點
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:若數列滿足,存在實數
,對任意
,都有
,則稱數列
有上界,
是數列
的一個上界,已知定理:單調遞增有上界的數列收斂(即極限存在).
(1)數列是否存在上界?若存在,試求其所有上界中的最小值;若不存在,請說明理由;
(2)若非負數列滿足
,
(
),求證:1是非負數列
的一個上界,且數列
的極限存在,并求其極限;
(3)若正項遞增數列無上界,證明:存在
,當
時,恒有
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,過
作
軸的垂線交橢圓
于點
(點
在
軸上方),斜率為
的直線交橢圓
于
,
兩點,過點
作直線
交橢圓
于點
,且
,直線
交
軸于點
.
(1)設橢圓的離心率為
,當點
為橢圓
的右頂點時,
的坐標為
,求
的值.
(2)若橢圓的方程為
,且
,是否存
在使得
成立?如果存在,求出
的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數集由實數構成,且滿足:若
(
且
),則
.
(1)若,試證明
中還有另外兩個元素;
(2)集合是否為雙元素集合,并說明理由;
(3)若中元素個數不超過8個,所有元素的和為
,且
中有一個元素的平方等于所有元素的積,求集合
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1是某條公共汽車線路收支差額與乘客量的圖象.由于目前本條線路虧損,公司有關人員提出了兩種扭虧為盈的建議,如圖2、3所示.你能根據圖象判斷下列說法正確的是( )
①圖2的建議為減少運營成本;②圖2的建議可能是提高票價;
③圖3的建議為減少運營成本;④圖3的建議可能是提高票價.
A.①④B.②④C.①③D.②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lg(3+x)+lg(3-x).
(1)判斷的奇偶性并加以證明;
(2)判斷的單調性(不需要證明);
(3)解關于m的不等式f( m )- f( m+1)﹤0.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com