精英家教網 > 高中數學 > 題目詳情

【題目】為減少空氣污染,某市鼓勵居民用電(減少燃氣或燃煤),采用分段計費的方法計算電費每月用電不超過100度仍按原標準收費,超過的部分每度按0.5元計算.

Ⅰ.設月用電x度時,應交電費y元,寫出y關于x的函數關系式;

Ⅱ.小明家第一季度繳納電費情況如下:

月份

一月

二月

三月

合計

繳費金額

76

63

45.6

184.6

問小明家第一季度共用多少度?

【答案】Ⅰ. ; Ⅱ.第一季度共用電330度。

【解析】

(1)根據應交電費=月用電度數×每度電費建立函數關系,因為每度電費標準不一樣,需要分類討論;
(2)分別根據每月所交電費,求出每月所用電的度數,最后相交即可求出所求.

Ⅰ.由題可得

Ⅱ.一月用電 ; 二月用電 ;

三月用電 ; 第一季度共用電330度。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)=x2+ax+b,a,b∈R.
(1)若2a+b=4,證明:|f(x)|在區間[0,4]上的最大值M(a)≥12;
(2)存在實數a,使得當x∈[0,b]時,1≤f(x)≤10恒成立,求實數b的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB為直徑的圓,DC的延長線與AB的延長線交于點E.
(Ⅰ)求證:DC是⊙O的切線;
(Ⅱ)若EB=6,EC=6 ,求BC的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓C: =1的離心率e= ,動點P在橢圓C上,點P到橢圓C的兩個焦點的距離之和是4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C1的方程為 =1(m>n>0),橢圓C2的方程為 =λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知橢圓C2是橢圓C的3倍相似橢圓.若過橢圓C上動點P的切線l交橢圓C2于A,B兩點,O為坐標原點,試證明當切線l變化時|PA|=|PB|并研究△OAB面積的變化情況.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求曲線在點處的切線方程;

(2)設,計算的導數.

【答案】(1).(2).

【解析】試題分析:(1)由導數的基本定義就出斜率,根據點斜式寫出切線方程;(2), .

試題解析:

(1),則,

,∴所求切線方程為,.

(2), .

型】解答
束】
18

【題目】對某校高一年級學生參加社區服務次數進行統計,隨機抽取名學生作為樣本得到這名學生參加社區服務的次數.根據此數據作出了頻數與頻率的統計表和頻率分布直方圖如下

1)求出表中及圖中的值;

2)若該校高一學生有800人,試估計該校高一學生參加社區服務的次數在區間內的人數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓的圓心在直線上,且圓經過點與點.

(1)求圓的方程;

(2)過點作圓的切線,求切線所在的直線的方程.

【答案】(1);(2).

【解析】試題分析:(1)求出線段的中點,進而得到線段的垂直平分線為,與聯立得交點,∴.則圓的方程可求

(2)當切線斜率不存在時,可知切線方程為.

當切線斜率存在時,設切線方程為,由到此直線的距離為,解得,即可到切線所在直線的方程.

試題解析:((1)設 線段的中點為,∵,

∴線段的垂直平分線為,與聯立得交點,

.

∴圓的方程為.

(2)當切線斜率不存在時,切線方程為.

當切線斜率存在時,設切線方程為,即,

到此直線的距離為,解得,∴切線方程為.

故滿足條件的切線方程為.

【點睛本題考查圓的方程的求法,圓的切線,中點弦等問題,解題的關鍵是利用圓的特性,利用點到直線的距離公式求解.

型】解答
束】
20

【題目】某小型企業甲產品生產的投入成本(單位:萬元)與產品銷售收入(單位:萬元)存在較好的線性關系,下表記錄了最近5次產品的相關數據.

(投入成本)

7

10

11

15

17

(銷售收入)

19

22

25

30

34

1)求關于的線性回歸方程

2)根據(1)中的回歸方程,判斷該企業甲產品投入成本20萬元的毛利率更大還是投入成本24萬元的毛利率更大()?

相關公式 , .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知各項均為正數的數列{an}的前n項和Sn>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}的通項公式;
(2)若數列{bn}滿足bn= ,求{bn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,AB是⊙O的一條切線,切點為B,直線ADE、CFD、CGE都是⊙O的割線,已知AC=AB.

(1)若CG=1,CD=4.求 的值.
(2)求證:FG∥AC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某機構在某一學校隨機抽取30名學生參加環保知識測試,測試成績(單位:分)如圖所示,假設得分值的中位數為me , 眾數為m0 , 平均值為 ,則(

A.me=m0=
B.me=m0
C.me<m0
D.m0<me

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视