【題目】已知曲線
(1)若,過點
的直線
交曲線
于
兩點,且
,求直線
的方程;
(2)若曲線表示圓時,已知圓
與圓
交于
兩點,若弦
所在的直線方程為
,
為圓
的直徑,且圓
過原點,求實數
的值.
【答案】(1)或
(即
) ;(2)
.
【解析】試題分析:(1)由已知條件推導出圓心C(1,2),2為半徑,由此利用點到直線的距離公式結合已知條件能求出m=1.
(2)求出圓的方程,兩圓相減得公共弦方程
,即得m.
試題解析:
(1) 當時, 曲線C是以
為圓心,2為半徑的圓,
若直線的斜率不存在,顯然不符,
故可直線為:
,即
.
由題意知,圓心到直線
的距離等于
,
即:
解得或
.故的方程
或
(即
)
(2)由曲線C表示圓,即
,
所以圓心C(1,2),半徑,則必有
.
設過圓心且與
垂直的直線為:
,解得
;
,所以,圓心
又因為圓過原點,則
;
所以圓的方程為
,整理得:
;
因為為兩圓的公共弦,兩圓方程相減得:
;
所以為直線
的方程;又因為
;所以
.
科目:高中數學 來源: 題型:
【題目】為了讓學生了解環保知識,增強環保意識,某中學舉行了一次“環保知識競賽”,共有900名學生參加了這次競賽.為了了解這次競賽的成績情況,從中抽取了部分學生的成績(得分均為整數,滿分為100分)進行統計,請你根據尚未完成的頻率分布表和頻率分布直方圖,回答下面問題:
(1)結合圖表信息,補全頻率分布直方圖;
(2)對于參加這次競賽的900名學生,估計成績不低于76分的約有多少人.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的兩個焦點為
,
,離心率為
,點
,
在橢圓上,
在線段
上,且
的周長等于
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過圓:
上任意一點
作橢圓
的兩條切線
和
與圓
交于點
,
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《續古摘奇算法》(楊輝)一書中有關于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對角線上的三個數的和都相等,我們規定:只要兩個幻方的對應位置(如每行第一列的方格)中的數字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個數是( )
8 | 3 | 4 |
1 | 5 | 9 |
6 | 7 | 2 |
A. 9 B. 8 C. 6 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,
是焦點,直線
是經過點
的任意直線.
(Ⅰ)若直線與拋物線交于
、
兩點,且
(
是坐標原點,
是垂足),求動點
的軌跡方程;
(Ⅱ)若、
兩點在拋物線
上,且滿足
,求證:直線
必過定點,并求出定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中平面
,且
,
.
(1)求證:;
(2)在線段上,是否存在一點
,使得二面角
的大小為45°,如果存在,求
與平面
所成角的正弦值,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分為14分)已知定義域為R的函數是奇函數.
(1)求a,b的值;
(2)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某冷飲店只出售一種飲品,該飲品每一杯的成本價為3元,售價為8元,每天售出的第20杯及之后的飲品半價出售.該店統計了近10天的飲品銷量,如圖所示:設為每天飲品的銷量,
為該店每天的利潤.
(1)求關于
的表達式;
(2)從日利潤不少于96元的幾天里任選2天,求選出的這2天日利潤都是97元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓與圓
:
,圓
都相內切,即圓心
的軌跡為曲線
;設
為曲線
上的一個不在
軸上的動點,
為坐標原點,過點
作
的平行線交曲線
于
,
兩個不同的點.
(1)求曲線的方程;
(2)試探究和
的比值能否為一個常數?若能,求出這個常數;若不能,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com