【題目】(本小題滿分為14分)已知定義域為R的函數是奇函數.
(1)求a,b的值;
(2)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
【答案】(1)a=2,b=1.(2)
【解析】試題分析:(1)由函數是奇函數可得,將
代入兩個特殊值得到關于
的方程組求解其值;(2)首先利用定義法判斷函數的單調性,利用奇函數將不等式變形為f(x2-x)< f(-2x2+t),,利用單調性得到關于
的恒成立不等式,分離參數
后通過求函數最值得到
的取值范圍
試題解析:(1)∵f(x)是奇函數且0∈R,∴f(0)=0即
∴
又由f(1)=-f(-1)知
a=2
∴f(x)=
(2)證明設x1,x2∈(-∞,+∞)且x1<x2
·
∵y=2x在(-∞,+∞)上為增函數且x1<x2,∴
且y=2x>0恒成立,∴
∴f(x1)-f(x2)>0 即f(x1)>f(x2)
∴f(x)在(-∞,+∞)上為減函數
∵f(x)是奇函數f(x2-x)+f(2x2-t)<0等價于f(x2-x)<-f(2x2-t)=f(-2x2+t)
又∵f(x)是減函數,∴x2-x>-2x2+t
即一切x∈R,3x2-x-t>0恒成立
∴△=1+12t<0,即t<
科目:高中數學 來源: 題型:
【題目】7人站成一排.(寫出必要的過程,結果用數字作答)
(1)甲、乙兩人相鄰的排法有多少種?
(2)甲、乙兩人不相鄰的排法有多少種?
(3)甲、乙、丙三人兩兩不相鄰的排法有多少種?
(4)甲、乙、丙三人至多兩人不相鄰的排法有多少種?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線
(1)若,過點
的直線
交曲線
于
兩點,且
,求直線
的方程;
(2)若曲線表示圓時,已知圓
與圓
交于
兩點,若弦
所在的直線方程為
,
為圓
的直徑,且圓
過原點,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,設傾斜角為
的直線
的參數方程為
(
為參數)與曲線
(
為參數)相交于不同的兩點
.
(1)若,求線段
的中點的直角坐標;
(2)若直線的斜率為2,且過已知點
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)若函數有且只有一個極值點,求實數
的取值范圍;
(2)對于函數,
,
,若對于區間
上的任意一個
,都有
,則稱函數
是函數
,
在區間
上的一個“分界函數”.已知
,
,問是否存在實數
,使得函數
是函數
,
在區間
上的一個“分界函數”?若存在,求實數
的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com