精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=x2bxc(b,c∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當x≥0時,f(x)≤(xc)2;
(2)若對滿足題設條件的任意b,c,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.

(1)見解析(2)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知二次函數f(x)滿足f(2)=-1,f(-1)=-1,且f(x)的最大值為8,求二次函數f(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=3ax2+2bx+c,a+b+c=0,且f(0)·f(1)>0.
(1)求證:-2<<-1.
(2)若x1,x2是方程f(x)=0的兩個實根,求|x1-x2|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在C城周邊已有兩條公路l1,l2在點O處交匯.已知OC=()km,∠AOB=75°,∠AOC=45°,現規劃在公路l1,l2上分別選擇A,B兩處為交匯點(異于點O)直接修建一條公路通過C城.設OAx km,OBy km.

(1)求y關于x的函數關系式并指出它的定義域;
(2)試確定點AB的位置,使△OAB的面積最小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對于定義域為A的函數f(x),如果任意的x1x2A,當x1x2時,都有f(x1)<f(x2),則稱函數f(x)是A上的嚴格增函數;函數f(k)是定義在N*上,函數值也在N*中的嚴格增函數,并且滿足條件f(f(k))=3k.
(1)證明:f(3k)=3f(k);
(2)求f(3k-1)(k∈N*)的值;
(3)是否存在p個連續的自然數,使得它們的函數值依次也是連續的自然數;若存在,找出所有的p值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某創業投資公司擬投資開發某種新能源產品,估計能獲得10萬元到1 000萬元的投資收益.現準備制定一個對科研課題組的獎勵方案:資金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(1)若建立函數yf(x)模型制定獎勵方案,試用數學語言表述該公司對獎勵函數f(x)模型的基本要求,并分析函數y+2是否符合公司要求的獎勵函數模型,并說明原因;
(2)若該公司采用模型函數y作為獎勵函數模型,試確定最小的正整數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)=ax2bxb-1(a≠0).
(1)當a=1,b=-2時,求函數f(x)的零點;
(2)若對任意b∈R,函數f(x)恒有兩個不同零點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一次函數上的增函數,,已知.
(1)求;
(2)若單調遞增,求實數的取值范圍;
(3)當時,有最大值,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

己知函數f(x)=ex,xR.
(1)若直線y=kx+1與f(x)的反函數圖象相切,求實數k的值;
(2)設x﹥0,討論曲線y=f(x)與曲線y=mx2(m﹥0)公共點的個數;
(3)設,比較的大小并說明理由。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视