精英家教網 > 高中數學 > 題目詳情

【題目】為了更好地支持中小型企業的發展,某市決定對部分企業的稅收進行適當的減免,某機構調查了當地的中小型企業年收入情況,并根據所得數據畫出了樣本的頻率分布直方圖,下面三個結論:

樣本數據落在區間的頻率為0.45

如果規定年收入在500萬元以內的企業才能享受減免稅政策,估計有55%的當地中小型企業能享受到減免稅政策;

樣本的中位數為480萬元.

其中正確結論的個數為( )

A.0B.1C.2D.3

【答案】D

【解析】

根據直方圖求出,求出的頻率,可判斷;求出的頻率,可判斷;根據中位數是從左到右頻率為的分界點,先確定在哪個區間,再求出占該區間的比例,求出中位數,判斷③.

,

的頻率為正確;

的頻率為正確;

的頻率為,的頻率為

中位數在且占該組的,

故中位數為,正確.

故選:D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,,M是橢圓E上的一個動點,且的面積的最大值為.

1)求橢圓E的標準方程,

2)若,四邊形ABCD內接于橢圓E,記直線AD,BC的斜率分別為,,求證:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著科技的發展,網購已逐漸融入了人們的生活.網購是非常方便的購物方式,為了了解網購在某市的普及情況,某調查機構進行了有關網購的調查,并從參與調查的市民中隨機抽取了男、女各100人進行分析,得到如下所示的統計表.

經常網購

偶爾網購或不網購

合計

男性

50

100

女性

70

100

合計

:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

1)完成上表,并根據以上數據判斷能否在犯錯誤的概率不超過0.01的前提下認為該市市民的網購情況與性別無關.

2)①現從所抽取的100位女性市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優惠券,求選取的3人中至少有2人經常網購的概率;

②將頻率視為概率,從該市所有參與調查的市民中隨機抽取10人贈送禮品,記其中經常網購的人數為X,求隨機變量X的數學期望和方差.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a,b,c分別是△ABC的內角A,B,C的對邊,若△ABC的周長為2(+1),且sin B+sin C=sin A,則a= (  )

A. B. 2 C. 4 D.

【答案】B

【解析】

根據正弦定理把轉化為邊的關系,進而根據ABC的周長,聯立方程組,可求出a的值.

根據正弦定理,可化為

∵△ABC的周長為,

聯立方程組,

解得a=2.

故選:B

【點睛】

(1)在三角形中根據已知條件求未知的邊或角時,要靈活選擇正弦、余弦定理進行邊角之間的轉化,以達到求解的目的.

(2)求角的大小時,在得到角的某一個三角函數值后,還要根據角的范圍才能確定角的大小,這點容易被忽視,解題時要注意.

型】單選題
束】
7

【題目】已知數列{an}中,an=n2-kn(n∈N*),且{an}單調遞增,則k的取值范圍是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCDAD∥BC,AB=AD=AC=3,PA=BC=4M為線段AD上一點,AM=2MD,NPC的中點.

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據說,年過半百的笛卡爾擔任瑞典一小公國的公主克里斯蒂娜的數學老師,日久生情,彼此愛慕,其父國王知情后大怒,將笛卡爾流放回法國,并軟禁公主,笛卡爾回法國后染上黑死病,連連給公主寫信,死前最后一封信只有一個公式:國王不懂,將這封信交給了公主,公主用笛卡爾教她的坐標知識,畫出了這個圖形心形線”.明白了笛卡爾的心意,登上了國王寶座后,派人去尋笛卡爾,其逝久矣(僅是一個傳說).心形線是由一個圓上的一個定點,當該圓繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名.在極坐標系中,方程表示的曲線就是一條心形線,如圖,以極軸所在直線為軸,極點為坐標原點的直角坐標系中,已知曲線的參數方程為為參數).

1)求曲線的極坐標方程;

2)若曲線相交于、三點,求線段的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修:不等式選講

已知函數f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若關于x的不等式f(x)≤|3m+1|有解,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且.

1)求拋物線的方程;

2)過點作直線交拋物線于,兩點,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在平面直角坐標系中,直線l的參數方程為為參數),曲線的方程為.以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

1)求直線l和曲線的極坐標方程;

2)曲線分別交直線和曲線于點,求的最大值及相應的的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视