【題目】漢代數學家趙爽在注解《周髀算經》時給出的“趙爽弦圖”(如下圖),四個全等的直角三角形(朱實),可以圍成一個大的正方形,中空部分為一個小正方形(黃實).若直角三角形中一條較長的直角邊為8,直角三角形的面積為24,若在上面扔一顆玻璃小球,則小球落在“黃實”區域的概率為( )
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】中國有個名句“運籌帷幄之中,決勝千里之外.”其中的“籌”原意是指《孫子算經》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如下表
表示一個多位數時,像阿拉伯計數一樣,把各個數位的數碼從左到右排列,但各位數碼的籌式需要縱橫相間,個位,百位,萬位數用縱式表示,十位,千位,十萬位用橫式表示,以此類推, 例如6613用算籌表示就是: ,則26337用算籌可表示為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Acos(ωx+φ)(A>0,ω>0,φ<0)的圖象與y軸的交點為(0,1),它的一個最高點和一個最低點的坐標分別為(x0,2),(x0
,﹣2),
(1)若函數f(x)的最小正周期為π,求函數f(x)的解析式;
(2)當x∈(x0,x0)時,f(x)圖象上有且僅有一個最高點和一個最低點,且關于x的方程f(x)﹣a=0在區間[
,
]上有且僅有一解,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別為AB、BC的中點,現在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三點重合,重合后的點記為P.
問:(1)這個幾何體是什么?
(2)這個幾何體由幾個面構成?每個面的三角形是什么三角形?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在中,
,
分別為
,
的中點,
,如圖1.以
為折痕將
折起,使點
到達點
的位置,如圖2.
如圖1 如圖2
(1)證明:平面平面
;
(2)若平面平面
,求直線
與平面
所成角的正弦值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列所給4個圖象中,與所給3件事吻合最好的順序為 ( )
(1)我離開家不久,發現自己把作業本忘在家里了,于是立刻返回家里取了作業本再上學;
(2)我出發后,心情輕松,緩緩行進,后來為了趕時間開始加速;
(3)我騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間.
A. (1)(2)(4) B. (4)(2)(1) C. (4)(3)(1) D. (4)(1)(2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(10分)四面體ABCD及其三視圖如圖所示,平行于棱AD,BC的平面分別交四面體的棱AB,BD,DC,CA于點E,F,G,H.
(1)求四面體ABCD的體積;
(2)證明:四邊形EFGH是矩形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】汽車“定速巡航”技術是用于控制汽車的定速行駛,當汽車被設定為定速巡航狀態時,電腦根據道路狀況和汽車的行駛阻力自動控制供油量,使汽車始終保持在所設定的車速行駛,而無需司機操縱油門,從而減輕疲勞,促進安全,節省燃料.某汽車公司為測量某型號汽車定速巡航狀態下的油耗情況,選擇一段長度為240km的平坦高速路段進行測試.經多次測試得到一輛汽車每小時耗油量F(單位:L)與速度v(單位:km/h)()的下列數據:
v | 0 | 40 | 60 | 80 | 120 |
F | 0 | 10 | 20 |
為了描述汽車每小時耗油量與速度的關系,現有以下三種函數模型供選擇:
,
,
.
(1)請選出你認為最符合實際的函數模型,并求出相應的函數解析式.
(2)這輛車在該測試路段上以什么速度行駛才能使總耗油量最少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com