【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),以原點為極點,以
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
,
(Ⅰ)求曲線的普通方程和曲線
的直角坐標方程;
(Ⅱ)設點,曲線
與曲線
交于
兩點,求
的值.
科目:高中數學 來源: 題型:
【題目】已知點在平行于
軸的直線
上,且
與
軸的交點為
,動點
滿足
平行于
軸,且
.
(1)求出點的軌跡方程.
(2)設點,
,求
的最小值,并寫出此時
點的坐標.
(3)過點的直線與
點的軌跡交于
.
兩點,求證
.
兩點的橫坐標乘積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓關于直線
對稱,圓心C在第二象限,半徑為
.
(1)求圓C的方程.
(2)是否存在直線l與圓C相切,且在x軸、y軸上的截距相等?若存在,寫出滿足條件的直線條數(不要求過程);若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圓與
軸交于
、
兩點(點
在點
的左側),
、
是分別過
、
點的圓
的切線,過此圓上的另一個點
(
點是圓上任一不與
、
重合的動點)作此圓的切線,分別交
、
于
、
兩點,且
、
兩直線交于點
.
()設切點
坐標為
,求證:切線
的方程為
.
()設點
坐標為
,試寫出
與
的關系表達式(寫出詳細推理與計算過程).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體中,垂直于梯形
所在的平面,
為
的中點,
,四邊形
為矩形,線段
交
于點
.
(1)求證:平面
;
(2)求二面角的正弦值;
(3)在線段上是否存在一點
,使得
與平面
所成角的大小為
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區2007年至2013年農村居民家庭純收入y(單位:千元)的數據如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區農村居民家庭人均純收入的變化情況,并預測該地區2015年農村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校研究性學習小組對該校高三學生的視力情況進行調查,在高三的全體1000名學生中隨機抽取了100名學生的體檢表,并得到如下直方圖:
年級名次/是否近視 | 1-50 | 951-1000 |
近視 | 41 | 32 |
不近視 | 9 | 18 |
(1)若直方圖中后四組的頻數成等差數列,試估計全年級視力在5.0以下的人數;
(2)學習小組成員發現,學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關系,對年級名次在1~50名和951~1000名的學生進行了調查,得到如上述表格中數據,根據表中的數據,能否在犯錯的概率不超過0.05的前提下認為視力與學習成績有關系;
(3)在(2)中調查的100名學生中,按照分層抽樣在不近視的學生中抽取了9人,進一步調查他們良好的護眼習慣,并且在這9人中任取3人,記名次在1~50名的學生人數為X,求X的分布列和數學期望.
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com