精英家教網 > 高中數學 > 題目詳情

【題目】在銳角△ABC中,a,b,c是角A,B,C的對邊 sinC﹣cosB=cos(A﹣C).
(1)求角A的度數;
(2)若a=2 ,且△ABC的面積是3 ,求b+c.

【答案】
(1)解:因為由已知可得:cos B+cos (A﹣C)= sin C,

所以:﹣cos (A+C)+cos (A﹣C)= sin C,

可得:2sin A sin C= sinC,

故可得:sin A=

因為△ABC為銳角三角形,

所以A=60°


(2)解:∵A=60°,△ABC的面積是3 = bcsinA= bc,

∴bc=12,

∵a=2 ,

∴由余弦定理a2=b2+c2﹣2bccosA,可得:12=b2+c2﹣bc=(b+c)2﹣3bc=(b+c)2﹣36,

∴解得:b+c=4


【解析】(1)由cos B+cos (A﹣C)= sin C,利用兩角和與差的三角函數展開可求sin A,進而可求A.(2)由三角形的面積公式可求bc的值,進而利用余弦定理,平方和公式即可解得b+c的值.
【考點精析】根據題目的已知條件,利用正弦定理的定義和余弦定理的定義的相關知識可以得到問題的答案,需要掌握正弦定理:;余弦定理:;;

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】將一枚骰子先后拋擲兩次,觀察向上的點數

(1)求點數之和是5的概率;

(2)設a,b分別是將一枚骰子先后拋擲兩次向上的點數,求等式成立的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“奶茶妹妹”對某時間段的奶茶銷售量及其價格進行調查,統計出售價x元和銷售量y杯之間的一組數據如下表所示:

價格x

5

5.5

6.5

7

銷售量y

12

10

6

4

通過分析,發現銷售量y對奶茶的價格x具有線性相關關系.
(1)求銷售量y對奶茶的價格x的回歸直線方程;
注:在回歸直線y= 中, , =146.5.
(2)欲使銷售量為13杯,則價格應定為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列{an}的前n項和為Sn滿足2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差數列.
(1)求a1的值;
(2)求數列{an}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}與{bn}滿足an=2bn+3(n∈N*),若{bn}的前n項和為Sn= (3n﹣1)且λan>bn+36(n﹣3)+3λ對一切n∈N*恒成立,則實數λ的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且以原點為圓心,橢圓的焦距為直徑的圓與直線相切(為常數).

(1)求橢圓的標準方程;

(2)如圖,若橢圓的左、右焦點分別為,過作直線與橢圓分別交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】記實數x1 , x2 , …,xn中最小數為min{x1 , x2 , …,xn},則定義在區間[0,+∞)上的函數f(x)=min{x2+1,x+3,13﹣x}的最大值為(
A.5
B.6
C.8
D.10

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,O為AD的中點,射線OP從OA出發,繞著點O順時針方向旋轉至OD,在旋轉的過程中,記∠AOP為x(x∈[0,π]),OP所經過正方形ABCD內的區域(陰影部分)的面積S=f(x),那么對于函數f(x)有以下三個結論:
①f( )= ;
②任意x∈[0, ],都有f( ﹣x)+f( +x)=4;
③任意x1 , x2∈( ,π),且x1≠x2 , 都有 <0.
其中所有正確結論的序號是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=xcosx2在區間[0,4]上的零點個數為(
A.4
B.5
C.6
D.7

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视