設動點P(x,y)(x≥0)到定點F的距離比到y軸的距離大
.記點P的軌跡為曲線C.
(1)求點P的軌跡方程;
(2)設圓M過A(1,0),且圓心M在P的軌跡上,BD是圓M在y軸上截得的弦,當M運動時弦長BD是否為定值?說明理由;
(3)過F作互相垂直的兩直線交曲線C于G、H、R、S,求四邊形GRHS面積的最小值.
(1) y2=2x (2) BD=2,即弦長BD為定值 (3)8
解析解:(1)由題意知,所求動點P(x,y)的軌跡為以F為焦點,直線l:x=-
為準線的拋物線,其方程為y2=2x.
(2)是定值.解法如下:設圓心M,
半徑r=,
圓的方程為+(y-a)2=a2+
,
令x=0,得B(0,1+a),D(0,-1+a),
∴BD=2,即弦長BD為定值.
(3)設過F的直線GH的方程為y=k,G(x1,y1),H(x2,y2),
由得k2x2-(k2+2)x+
=0,
∴x1+x2=1+,x1x2=
,
∴|GH|=·
=2+
,
同理得|RS|=2+2k2.
S四邊形GRHS=(2+2k2)=
2≥8(當且僅當k=±1時取等號).
∴四邊形GRHS面積的最小值為8.
科目:高中數學 來源: 題型:解答題
已知是橢圓
的兩個焦點,
為坐標原點,點
在橢圓上,且
,⊙
是以
為直徑的圓,直線
:
與⊙
相切,并且與橢圓交于不同的兩點
(1)求橢圓的標準方程;
(2)當,且滿足
時,求弦長
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設,
分別是橢圓
:
的左、右焦點,過
作傾斜角為
的直線交橢圓
于
,
兩點,
到直線
的距離為
,連接橢圓
的四個頂點得到的菱形面積為
.
(1)求橢圓的方程;
(2)已知點,設
是橢圓
上的一點,過
、
兩點的直線
交
軸于點
,若
, 求
的取值范圍;
(3)作直線與橢圓
交于不同的兩點
,
,其中
點的坐標為
,若點
是線段
垂直平分線上一點,且滿足
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,等邊三角形OAB的邊長為8,且其三個頂點均在拋物線E:x2=2py(p>0)上.
(1)求拋物線E的方程;
(2)設動直線l與拋物線E相切于點P,與直線y=-1相交于點Q,證明以PQ為直徑的圓恒過y軸上某定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓M:=1(a>b>0)的短半軸長b=1,且橢圓上一點與橢圓的兩個焦點構成的三角形的周長為6+4
.
(1)求橢圓M的方程;
(2)設直線l:x=my+t與橢圓M交于A,B兩點,若以AB為直徑的圓經過橢圓的右頂點C,求t的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知直線y=-2上有一個動點Q,過點Q作直線l1垂直于x軸,動點P在l1上,且滿足OP⊥OQ(O為坐標原點),記點P的軌跡為C.
(1)求曲線C的方程.
(2)若直線l2是曲線C的一條切線,當點(0,2)到直線l2的距離最短時,求直線l2的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線的中心在原點,焦點F1,F2在坐標軸上,離心率為,且過點P(4,-
).
(1)求雙曲線的方程.
(2)若點M(3,m)在雙曲線上,求證:·
=0.
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設拋物線的頂點在原點,準線方程為x=-.
(1)求拋物線的標準方程;
(2)若點P是拋物線上的動點,點P在y軸上的射影是Q,點M,試判斷|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,請說明理由;
(3)過拋物線焦點F作互相垂直的兩直線分別交拋物線于A,C,B,D,求四邊形ABCD面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com