精英家教網 > 高中數學 > 題目詳情

【題目】袋中裝有5個大小相同的球,其中有2個白球,2個黑球,1個紅球,現從袋中每次取出1球,去除后不放回,直到取到有兩種不同顏色的球時即終止,用表示終止取球時所需的取球次數,則隨機變量的數字期望是(

A. B. C. D.

【答案】A

【解析】

本題需要取到有兩種不同顏色的球”,則既有可能是取三次(21其他顏色或者21其他顏色),也有可能是取兩次(11其他顏色或11其他顏色或11其他顏色),通過上述計算出它們的概率,再算出它們的期望。

袋中裝有5個大小相同的球,其中有2個白球,2個黑球,1個紅球,現從袋中每次取出1球,取后不放回,直到取到有兩種不同顏色的球時即終止,用表示終止取球時所需的取球次數,則的可能取值為,,

所以,所以隨機變量的數字期望,故選A

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若命題p:函數y=x2﹣2x的單調遞增區間是[1,+∞),命題q:函數y=x﹣ 的單調遞增區間是[1,+∞),則(
A.p∧q是真命題
B.p∨q是假命題
C.非p是真命題
D.非q是真命題

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.

Ⅰ)由折線圖看出,可用線性回歸模型擬合yt的關系,請用相關系數加以說明;

Ⅱ)建立y關于t的回歸方程(系數精確到0.01),預測2016年我國生活垃圾無害化處理量.

附注:

參考數據:,

,≈2.646.

參考公式:相關系數

回歸方程中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,則該算法的功能是(

A.計算數列{2n1}前5項的和
B.計算數列{2n﹣1}前5項的和
C.計算數列{2n1}前6項的和
D.計算數列{2n﹣1}前6項的和

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2sinxcosx+2 cos2x﹣
(1)求函數f(x)的最小正周期和單調減區間;
(2)已知△ABC的三個內角A,B,C的對邊分別為a,b,c,其中a=7,若銳角A滿足f( )= ,且sinB+sinC= ,求bc的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為a元,在下一年續保時,實行的是費率浮動機制,且保費與上一年度車輛發生道路交通事故的情況相聯系.發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:

交強險浮動因素和費率浮動比率表

浮動因素

浮動比率

A1

上一個年度未發生有責任道路交通事故

下浮10%

A2

上兩個年度未發生有責任道路交通事故

下浮20%

A3

上三個及以上年度未發生有責任道路交通事故

下浮30%

A4

上一個年度發生一次有責任不涉及死亡的道路交通事故

0%

A5

上一個年度發生兩次及兩次以上有責任道路交通事故

上浮10%

A6

上一個年度發生有責任道路交通死亡事故

上浮30%

某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數量

10

5

5

20

15

5

(1)求一輛普通6座以下私家車在第四年續保時保費高于基本保費的頻率;

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機構調查的頻率一致,完成下列問題:

①若該銷售商店內有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內隨機挑選2輛車,求這2輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列{an}滿足an+1=an(1﹣an+1),a1=1,數列{bn}滿足:bn=anan+1 , 則數列{bn}的前10項和S10=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=ax3﹣3x2+1(a>0),定義h(x)=max{f(x),g(x)}=
(1)求函數f(x)的極值;
(2)若g(x)=xf'(x),且存在x∈[1,2]使h(x)=f(x),求實數a的取值范圍;
(3)若g(x)=lnx,試討論函數h(x)(x>0)的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】等比數列{an}是遞減數列,前n項的積為Tn,若T13=4T9,則a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

【答案】A

【解析】

由題意可得 q1,且 an 0,由條件可得 a1a2…a13=4a1a2…a9,化簡得a10a11a12a13=4,再由 a8a15=a10a13=a11a12,求得a8a15的值.

等比數列{an}是遞增數列,其前n項的積為Tn(n∈N*),若T13=4T9 ,設公比為q,

則由題意可得 q1,且 an >0.

∴a1a2…a13=4a1a2…a9,∴a10a11a12a13=4.

又由等比數列的性質可得 a8a15=a10a13=a11a12,∴a8a15=2.

故選:A.

【點睛】

本題主要考查等比數列的定義和性質,求得 a10a11a12a13=4是解題的關鍵.

型】單選題
束】
10

【題目】若直線y=2x上存在點(x,y)滿足約束條件,則實數m的最大值為

A. -1 B. 1 C. D. 2

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视