精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=x3+bx2+ax+d的圖象過點P(0,2),且在點M(﹣1,f(﹣1))處的切線程為6x﹣y+7=0.

(1)求函數y=f(x)的解析式;

(2)求函數y=f(x)的單調區間.

【答案】(1) f(x)=x3﹣3x2﹣3x+2.

(2) 單調增區間為(﹣∞,1﹣),(1+,+∞);單調減區間為(1﹣,1+).

【解析】分析:(1)求出導函數題意說明,,,由此可求得;

(2)解不等式得增區間,解不等式得減區間.

詳解:(1)f(x)的圖象經過P(0,2),d=2,

f(x)=x3+bx2+ax+2,f'(x)=3x2+2bx+a.

∵點M(﹣1,f(﹣1))處的切線方程為6x﹣y+7=0

f'(x)|x=1=3x2+2bx+a|x=1=3﹣2b+a=6,

還可以得到,f(﹣1)=y=1,即點M(﹣1,1)滿足f(x)方程,得到﹣1+b﹣a+2=1

由①、②聯立得b=a=﹣3 故所求的解析式是f(x)=x3﹣3x2﹣3x+2.

(2)f'(x)=3x2﹣6x﹣3.令3x2﹣6x﹣3=0,即x2﹣2x﹣1=0.解得x1=1- ,x2=1+.

x<1-,x>1+時,f'(x)>0;當1-<x<1+時,f'(x)<0.

f(x)的單調增區間為(﹣∞,1﹣),(1+,+∞);單調減區間為(1﹣,1+

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐的底面是菱形, 平面, ,點的中點.

(1)求證: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過P(2,1)且兩兩互相垂直的直線l1 , l2分別交橢圓 + =1于A,B與C,D.
(1)求|PA||PB|的最值;
(2)求證: + 為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設0<b<1+a,若關于x的不等式(x﹣b)2>(ax)2的解集中的整數解恰有3個,則(
A.﹣1<a<0
B.0<a<1
C.1<a<3
D.3<a<6

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設a+b=2,b>0,則當a=時, + 取得最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】A市某機構為了調查該市市民對我國申辦2034年足球世界杯的態度,隨機選取了140位市民進行調查,調查結果統計如下:

支持

不支持

總計

男性市民

60

女性市民

50

合計

70

140

(I)根據已知數據,把表格數據填寫完整;

(II)利用(1)完成的表格數據回答下列問題:

(。能否在犯錯誤的概率不超過0.001的前提下認為性別與支持申辦足球世界杯有關;

(ⅱ)已知在被調查的支持申辦足球世界杯的男性市民中有5位退休老人,其中2位是教師,現從這5位退休老人中隨機抽取3人,求至多有1位老師的概率。

附:,其中

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓,圓,動圓與圓外切并且與圓內切,圓心軌跡為曲線

(1)求曲線的方程;

(2)若是曲線上關于軸對稱的兩點,點,直線交曲線

于另一點,求證:直線過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】矩形ABCD的面積為4,如果矩形的周長不大于10,則稱此矩形是“美觀矩形”.

(1)當矩形ABCD是“美觀矩形”時,求矩形周長的取值范圍;

(2)就矩形ABCD的一邊長x的不同值,討論矩形是否是“美觀矩形”?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數對稱軸方程為,在上的奇函數滿足:當時,.

(1)求函數的解析式;

(2)判斷方程的根的個數,并說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视