【題目】一個正方體的平面展開圖及該正方體直觀圖的示意圖如圖所示,在正方體中,設BC的中點為M,GH的中點為N。
(1)請將字母F,G,H標記在正方體相應的頂點處(不需說明理由);
(2)證明:直線MN∥平面BDH;
(3)過點M,N,H的平面將正方體分割為兩部分,求這兩部分的體積比.
科目:高中數學 來源: 題型:
【題目】東亞運動會將于2013年10月6日在天津舉行.為了搞好接待工作,組委會打算學習北京奧運會招募大量志愿者的經驗,在某學院招募了16名男志愿者和14名女志愿者,調查發現,男女志愿者中分別有10人和6人喜愛運動,其余人不喜歡運動.
(1)根據以上數據完成以下2×2列聯表:
喜愛運動 | 不喜愛運動 | 總計 | |
男 | 10 | 16 | |
女 | 6 | 14 | |
總計 | 30 |
(2)根據列聯表的獨立性檢驗,能否在犯錯誤的概率不超過0.10的前提下認為性別與喜愛運動有關?
(3)如果從喜歡運動的女志愿者中(其中恰有4人會外語),抽取2名負責翻譯工作,那么抽出的志愿者中至少有1人能勝任翻譯工作的概率是多少?
參考公式:K2=,其中
n=a+b+c+d.
參考數據:
P(K2≥k) | 0.40 | 0.25 | 0.10 | 0.010 |
k | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現在某市進行調查,隨機抽調了50人,他們年齡的頻數分布及支持“生育二胎”人數如下表:
(1)由以上統計數據填下面列聯表,并問是否有99%的把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異;
(2)若對年齡在的被調查人中各隨機選取兩人進行調查,恰好這兩人都支持“生育二胎放開”的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,六面體ABCDHEFG中,四邊形ABCD為菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。
(1)求證:EG⊥DF;
(2)求BE與平面EFGH所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,給出下列結論:
(1)若對任意,且
,都有
,則
為R上的減函數;
(2)若為R上的偶函數,且在
內是減函數,
(-2)=0,則
>0解集為(-2,2);
(3)若為R上的奇函數,則
也是R上的奇函數;
(4)t為常數,若對任意的,都有
則
關于
對稱。
其中所有正確的結論序號為_________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產的某種時令商品每件成本為元,經過市場調研發現,這種商品在未來
天內的日銷售量
(件)與時間
(天)的關系如下表所示.
時間 | 1 | 3 | 6 | 10 | 36 | …… |
日銷售量
| 94 | 90 | 84 | 76 | 24 | …… |
未來40天內,前20天每天的價格(元/件)與時間
(天)的函數關系式為
,且
為整數),后20天每天的價格
(元/件)與時間
(天)的函數關系式為
,且
為整數).
(Ⅰ)認真分析表格中的數據,用所學過的一次函數、二次函數、反比例函數的知識確定一個滿足這些數據(件)與
(天)的關系式;
(Ⅱ)試預測未來 40 天中哪一天的日銷售利潤最大,最大利潤是多少?
(Ⅲ)在實際銷售的前 20 天中,該公司決定每銷售 1 件商品就捐贈元利潤
給希望工程. 公司通過銷售記錄發現,前 20 天中,每天扣除捐贈后的日銷售利潤隨時間
(天)的增大而增大,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的參數方程為
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.且曲線
的左焦點
在直線
上.
(1)若直線與曲線
交于
兩點,求
的值;
(2)求曲線的內接矩形的周長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P(2,2),圓C:x2+y2-8y=0,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標原點.
(1)求M的軌跡方程;
(2)當|OP|=|OM|時,求l的方程及△POM的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com