【題目】 如圖,△ABC的角平分線AD的延長線交它的外接圓于點
(Ⅰ)證明:△ABE∽△ADC;
(Ⅱ)若△ABC的面積,求
的大小.
【答案】(Ⅰ)證明見解析;(Ⅱ).
【解析】
(Ⅰ)先證明∠BAE=∠CAD,∠AEB=∠ACD,利用相似三角形的判定定理可得結論;(Ⅱ)利用三角形相似可得AB·AC=AD·AE,結合△ABC的面積,可得sin∠BAC=1,從而可得結果.
由已知條件,可得∠BAE=∠CAD.
因為∠AEB與∠ACB是同弧上的圓周角,
所以∠AEB=∠ACD.
故△ABE∽△ADC.
(Ⅱ)因為△ABE∽△ADC,所以,
即AB·AC=AD·AE.
又S=AB·AC·sin∠BAC,且S=
AD·AE,
故AB·AC·sin∠BAC=AD·AE.
則sin∠BAC=1,又∠BAC為三角形內角,所以∠BAC=90°.
科目:高中數學 來源: 題型:
【題目】下列有關命題的說法正確的是( )
A. ,使得
成立.
B. 命題:任意
,都有
,則
:存在
,使得
.
C. 命題“若且
,則
且
”的逆命題為真命題.
D. 若數列是等比數列,
則
是
的必要不充分條件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著“互聯網+交通”模式的迅猛發展,“共享助力單車”在很多城市相繼出現.某“共享助力單車”運營公司為了解某地區用戶對該公司所提供的服務的滿意度,隨機調查了100名用戶,得到用戶的滿意度評分(滿分10分),現將評分分為5組,如下表:
組別 | 一 | 二 | 三 | 四 | 五 |
滿意度評分 | [0,2) | [2,4) | [4,6) | [6,8) | [8,10] |
頻數 | 5 | 10 | a | 32 | 16 |
頻率 | 0.05 | b | 0.37 | c | 0.16 |
(1)求表格中的a,b,c的值;
(2)估計用戶的滿意度評分的平均數;
(3)若從這100名用戶中隨機抽取25人,估計滿意度評分低于6分的人數為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方形中,點
是
的中點,點
是
的中點,將
分別沿
折起,使
兩點重合于
,連接
.
(1)求證:;
(2)點是
上一點,若
平面
,則
為何值?并說明理由.
(3)若,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業有兩個分廠生產某種零件,按規定內徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優質品.從兩個分廠生產的零件中各抽出了500件,量其內徑尺寸,得結果如下表:
甲廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數 | 12 | 63 | 86 | 182 | 92 | 61 | 4 |
乙廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數 | 29 | 71 | 85 | 159 | 76 | 62 | 18 |
(1)試分別估計兩個分廠生產的零件的優質品率;
(2)由以上統計數據填下面列聯表,并問是否有
的把握認為“兩個分廠生產的零件的質量有差異”.
甲 廠 | 乙 廠 | 合計 | |
優質品 | |||
非優質品 | |||
合計 |
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】 如圖,在四棱錐中,底面
為平行四邊形,
為等邊三角形,平面
平面
,
,
,
,
(Ⅰ)設分別為
的中點,求證:
平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求直線與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com