【題目】如圖,已知與圓
相切于點
,經過點
的割線
交圓
于點
,
的平分線分別交
于點
.
(1)證明:;
(2)若,求
的值.
【答案】(1)證明見解析;(2)
【解析】
試題分析:(1)要證兩角相等,與已知條件“是角平分線”聯系,這兩個分別都可以作為一個三角形的外角,∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE,而由角平分線有,∠APD=∠CPE,由切線的性質有∠BAP=∠C,因此結論得這兩點;(2)由切線性質可得APC∽BPA,這樣會出現線段的比值,再由
及(1)的證明知
中,
,從而求得
.
試題解析:(1)∵PA是切線,AB是弦,∴∠BAP=∠C
又∵∠APD=∠CPE,∴∠BAP+∠APD=∠C+∠CPE.
∵∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE.
∴∠ADE=∠AED
(2)由(1)知∠BAP=∠C,又∠APC=∠BPA,∴APC∽BPA, ,
∵AC=AP, ∠BAP=∠C=∠APC,
由三角形的內角和定理知:∠C+∠APC+∠PAC=180,
∵BC是圓O的直徑,∴∠BAC=90,∴∠C+∠APC+∠BAP=90,∴∠C=∠APC=∠BAP=30,
在RtABC中,,∴
科目:高中數學 來源: 題型:
【題目】已知數字序列:3,-2,-4,0,5,13,6,-32,-18,9,-20.下面是從該序列中搜索所有負數的一個算法,請補全步驟:
S1 輸入實數a;
S2 _____;
S3 輸出a,轉S1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線和圓
.有以下幾個結論:
①直線的傾斜角不是鈍角;
②直線必過第一、三、四象限;
③直線能將圓
分割成弧長的比值為
的兩段圓弧;
④直線與圓
相交的最大弦長為
.
其中正確的是________________.(寫出所有正確說法的番號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某村計劃建造一個室內面積為800的矩形蔬菜溫室.在溫室內,沿左右兩側與后側內墻各保留1
寬的通道,沿前側內墻保留3
寬的空地.當矩形溫室的邊長各為多少時?蔬菜的種植面積最大,最大種植面積是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某學校的800名男生中隨機抽取50名測量身高,被測學生身高全部介于155和195
之間,將測量結果按如下方式分成八組:第一組
,第二組
,…,第八組
,下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數相同,第六組的人數為4人.
(1)求第七組的頻率;
(2)估計該校的800名男生的身高的眾數以及身高在180以上(含180
)的人數;
(3)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為,事件
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下四個命題中:
①在回歸分析中, 可用相關指數的值判斷的擬合效果,
越大,模型的擬合效果越好;
②兩個隨機變量的線性相關性越強,相關系數的絕對值越接近;
③若數據的方差為
,則
的方差為
;
④對分類變量與
的隨機變量
的觀測值
來說,
越小,判斷“
與
有關系”的把握程度越大.
其中真命題的個數為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,以橢圓的四個頂點為頂點的四邊形的面積為
.
(1)求橢圓的方程;
(2)斜率為的直線
過橢圓的右焦點
,且與橢圓交與
兩點,過線段
的中點與
垂直的直線交直線
于
點,若
為等邊三角形,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com