【題目】已知正方形和矩形
所在的平面互相垂直,
,點
在線段
上.
(Ⅰ)若為
的中點,求證:
平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)證明:存在點,使得
平面
,并求
的值.
【答案】(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)詳見解析.
【解析】
(Ⅰ)設,根據平面幾何知識得
為平行四邊形,即得
,再根據線面平行判定定理得結果,(Ⅱ)建立空間直角坐標系,設立各點坐標,利用方程組解得平面
的一個法向量,根據向量數量積得法向量夾角,最后根據二面角與向量夾角關系得結果,(Ⅲ)設
,根據題意得
與平面
法向量,列式可得M坐標,代入即得
的值.
(Ⅰ)設,連結
,
因為正方形,所以
為
中點
又矩形,
為
的中點
所以且
所以為平行四邊形
所以
又平面
,
平面
所以平面
(Ⅱ)以為原點,分別以
為
軸建立坐標系
則
設平面的法向量為
,
由得
則
易知平面的法向量
由圖可知二面角為銳角
所以二面角的余弦值為
(Ⅲ)設,則
若平面
,則
,即
所以解得
所以
所以
科目:高中數學 來源: 題型:
【題目】已知橢圓:
,其中
,點
是橢圓
的右頂點,射線
:
與橢圓
的交點為
.
(1)求點的坐標;
(2)設橢圓的長半軸、短半軸的長分別為
、
,當
的值在區間
中變化時,求
的取值范圍;
(3)在(2)的條件下,以為焦點,
為頂點且開口方向向左的拋物線過點
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,對于點
,若函數
滿足:
,都有
,就稱這個函數是點
的“限定函數”.以下函數:①
,②
,③
,④
,其中是原點
的“限定函數”的序號是______.已知點
在函數
的圖象上,若函數
是點
的“限定函數”,則
的取值范圍是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場營銷人員進行某商品的市場營銷調查時發現,每回饋消費者一定的點數,該商品每天的銷量就會發生一定的變化,經過試點統計得到以下表:
反饋點數t | 1 | 2 | 3 | 4 | 5 |
銷量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(Ⅰ)經分析發現,可用線性回歸模型擬合當地該商品銷量
(千件)與返還點數
之間的相關關系.試預測若返回6個點時該商品每天的銷量;
(Ⅱ)若節日期間營銷部對商品進行新一輪調整.已知某地擬購買該商品的消費群體十分龐大,經營銷調研機構對其中的200名消費者的返點數額的心理預期值進行了一個抽樣調查,得到如下一份頻數表:
返還點數預期值區間 (百分比) | [1,3) | [3,5) | [5,7) | [7,9) | [9,11) | [11,13) |
頻數 | 20 | 60 | 60 | 30 | 20 | 10 |
將對返點點數的心理預期值在和
的消費者分別定義為“欲望緊縮型”消費者和“欲望膨脹型”消費者,現采用分層抽樣的方法從位于這兩個區間的30名消費者中隨機抽取6名,再從這6人中隨機抽取3名進行跟蹤調查,求抽出的3人中至少有1名“欲望膨脹型”消費者的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知方程的曲線是圓C,
(1)若直線l:與圓C相交于M、N兩點,且
(O為坐標原點),求實數m的值;
(2)當時,設T為直線n:
上的動點,過T作圓C的兩條切線TG、TH,切點分別為G、H,求四邊形TGCH而積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知空間幾何體中,
與
均為邊長為
的等邊三角形,
為腰長為
的等腰三角形,平面
平面
,平面
平面
.
(1)試在平面內作一條直線,使直線上任意一點
與
的連線
均與平面
平行,并給出詳細證明
(2)求點到平面
的距離
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點F是拋物線C:y2=2px(p>0)的焦點,若點P(x0,4)在拋物線C上,且.
(1)求拋物線C的方程;
(2)動直線l:x=my+1(mR)與拋物線C相交于A,B兩點,問:在x軸上是否存在定點D(t,0)(其中t≠0),使得kAD+kBD=0,(kAD,kBD分別為直線AD,BD的斜率)若存在,求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三角形ABC為直角三角形,且,
,E,F分別為AB,AC的中點,G,H分別為BE,AF的中點(如圖一),現在沿EF將三角形AEF折起至
,連接
,
,GH(如圖二).
(1)證明:平面
;
(2)當平面平面EFCB時,求異面直線GH與EF所成角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com