【題目】過拋物線y2=4x焦點F的直線交該拋物線于A,B兩點,且|AB|=4,若原點O是△ABC的垂心,則點C的坐標為_____.
【答案】
【解析】
由題意設直線AB的方程,與拋物線聯立求出兩根之和,由拋物線的性質可得弦長|AB|的表達式,再由題意可得參數的值,進而求出直線的方程,代入拋物線的方程求出A,B的坐標,由O為三角形ABC的垂心可得C在x軸上,設C的坐標,由OA⊥BC,可得數量積為0,求出C點的坐標.
解:顯然直線AB的斜率不為0,
由題意設直線AB的方程為:x=my+1,設A(x1,y1),B(x2,y2),
聯立直線AB與拋物線的方程,
整理可得y2﹣4my﹣4=0,y1+y2=4m,所以x1+x2=4m2+2,
由拋物線的性質可得|AB|=x1+x2+2=4m2+4,
由題意可得4m2+4=4,所以m=0,即直線AB垂直于x軸,
所以可得A(1,2),B(1,﹣2),
因為原點O是△ABC的垂心,所以C在x軸上,設C(a,0),可得AO⊥BC,即0
即(1,2)(1﹣a,﹣2)=0,整理可得:1﹣a﹣4=0,解得a=﹣3,
所以C的坐標為:,
故答案為:.
科目:高中數學 來源: 題型:
【題目】對于數列,若存在
,使得
對任意
都成立,則稱數列
為“
折疊數列”.
(1)若,
,判斷數列
,
是否是“
折疊數列”,如果是,指出m的值;如果不是,請說明理由;
(2)若,求所有的實數q,使得數列
是3-折疊數列;
(3)給定常數,是否存在數列
使得對所有
,
都是
折疊數列,且
的各項中恰有
個不同的值,證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】正四棱錐P﹣ABCD的底面邊長為2,側棱長為2,過點A作一個與側棱PC垂直的平面α,則平面α被此正四棱錐所截的截面面積為_____,平面α將此正四棱錐分成的兩部分體積的比值為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數方程為(
為參數),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為
.
(1)寫出曲線C1和C2的直角坐標方程;
(2)已知P為曲線C2上的動點,過點P作曲線C1的切線,切點為A,求|PA|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線:
(α為參數)經過伸縮變換
得到曲線
,在以坐標原點為極點,x軸的正半軸為極軸的極坐標系中,直線l的極坐標方程為
.
(1)求曲線的普通方程;
(2)設點P是曲線上的動點,求點P到直線l距離d的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的側棱
與四棱錐
的側棱
都與底面
垂直,
,
,
,
,
,
.
(1)證明:平面
;
(2)在棱上是否存在點M,使平面
與平面
所成角的正弦值為
?如果存在,指出M點的位置;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列滿足奇數項
成等差,公差為
,偶數項
成等比,公比為
,且數列
的前
項和為
,
,
.
若
,
.
①求數列的通項公式;
②若,求正整數
的值;
若
,
,對任意給定的
,是否存在實數
,使得
對任意
恒成立?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com