精英家教網 > 高中數學 > 題目詳情

已知二次函數h(x)=ax2+bx+c(其中c<3),其導函數的圖象如圖,f(x)=6lnx+h(x).

①求f(x)在x=3處的切線斜率;
②若f(x)在區間(m,m+)上是單調函數,求實數m的取值范圍;
③若對任意k∈[-1,1],函數y=kx(x∈(0,6])的圖象總在函數y=f(x)圖象的上方,求c的取值范圍.

①0; ②;③

解析試題分析:①根據圖像求出一次導函數的解析式,那么函數的導函數就很容易得到了,所求的切線斜率即是其所對應的的導函數值;②根據函數的單調性與導數的關系求出函數的三個單調區間,使得所給的區間在任何一個單調區間內即可求出未知數的取值范圍;③由已知條件先導出和有關的不等式,將放在不等式的一邊,那么就有的最小值也要大于等于不等式另一邊式子的最大值,才能保證不等式恒成立,由函數的單調性和導數的關系求最值即可.
試題解析:①由已知得,其圖像如圖所示過點,
則有,解得,所以,
所以,則處的切線斜率為0;            3分
②由已知得,
,得,列表如下:

x
(0,1)
1
(1, 3)
3
(3,+∞)

+
0

0
+
..f(x)

極大值

極小值

要使f(x)在上是單調函數,則區間必須完全含在任意一個單調區間內,    5分
所以有,
所以m的取值范圍為:
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數
(Ⅰ)若時,求的單調區間;
(Ⅱ)時,有極值,且對任意時,求 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,(其中m為常數).
(1) 試討論在區間上的單調性;
(2) 令函數.當時,曲線上總存在相異兩點,使得過、點處的切線互相平行,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題13分)已知函數
(1)若實數求函數上的極值;
(2)記函數,設函數的圖像軸交于點,曲線點處的切線與兩坐標軸所圍成圖形的面積為則當時,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求的延長線上,的延長線上,且對角線點.已知米,米。

(1)設(單位:米),要使花壇的面積大于32平方米,求的取值范圍;
(2)若(單位:米),則當,的長度分別是多少時,花壇的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若,求的極大值;
(Ⅱ)若在定義域內單調遞減,求滿足此條件的實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數 (R),且該函數曲線處的切線與軸平行.
(Ⅰ)討論函數的單調性;
(Ⅱ)證明:當時,.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數().
(1)當時,求函數的單調區間;
(2)當時,取得極值,求函數上的最小值;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數F(x )=x2+aln(x+1)
(I)若函數y=f(x)在區間[1,+∞)上是單調遞增函數,求實數a的取值范圍;
(II)若函數y=f(x)有兩個極值點x1,x2,求證:.

查看答案和解析>>
久久精品免费一区二区视