【題目】下列四個命題
①若三個平面兩兩相交,則它們的交線只能平行或重合;
②若a、b是異面直線,則過不在a、b上的任一點一定可以作一條直線和a、b都相交;
③正三棱錐的底面邊長為a,側棱長為b,若過SA、SB的中點作平行于側棱SC的截面,則截面面積為
;
④過球面上任意給定兩點的平面與球面相截時其截面面積最大,則這樣的平面只有一個.
其中( ).
A. 只有①,②成立.
B. 只有③成立.
C. 只有④ 成立.
D. ①、②、③、④都不成立.
科目:高中數學 來源: 題型:
【題目】如圖,在直角△中,
,△
通過△
以直線
為軸順時針旋轉120°得到(
),點
為線段
上一點,且
.
(1)求證:,并證明:
平面
;
(2)分別以、
、
為
、
、
軸建立空間直角坐標系
,求異面直線
與
所成角的大小(用反余弦運算表示);
(3)若,求銳二面角
的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4―4:坐標系與參數方程]
在直角坐標系xOy中,曲線C的參數方程為(θ為參數),直線l的參數方程為
.
(1)若a=1,求C與l的交點坐標;
(2)若C上的點到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表提供了某廠節能降耗技術改造后生產甲產品過程中記錄的產量(噸)與相應的生產能耗
(噸)標準煤的幾組對照數據:
(1)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;
(2)已知該廠技改前,100噸甲產品的生產能耗為90噸標準煤.試根據(1)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?
,參考數值:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數學中有許多形狀優美、寓意美好的曲線,曲線C:就是其中之一(如圖).給出下列三個結論:
①曲線C恰好經過6個整點(即橫、縱坐標均為整數的點);
②曲線C上任意一點到原點的距離都不超過;
③曲線C所圍成的“心形”區域的面積小于3.
其中,所有正確結論的序號是
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用0與1兩個數字隨機填入如圖所示的5個格子里,每個格子填一個數字,并且從左到右數,不管數到哪個格子,總是1的個數不少于0的個數,則這樣填法的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下面幾種說法:
①相等向量的坐標相同;
②若向量滿足
,則
③若,
,
,
是不共線的四點,則“
”是“四邊形
為平行四邊形”的充要條件;
④的充要條件是
且
.
其中正確說法的個數是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com