精英家教網 > 高中數學 > 題目詳情

已知函數.
(Ⅰ)求函數的單調區間;
(Ⅱ)記函數的最小值為,求證:.

(Ⅰ)的單調遞增區間為;的單調遞減區間為
(Ⅱ)詳見解析

解析試題分析:(Ⅰ)先求導,再令導數等于0,討論導數的正負得函數的增減區間。(Ⅱ)由(Ⅰ)知,的最小值.令還是先求導再令導數等于0,討論導數的正負得函數的單調區間,從而可求得此函數的最值。
試題解析:解:
的定義域為.
.            2分
,解得(舍).
內變化時,的變化情況如下:

由上表知,的單調遞增區間為的單調遞減區間為.
5分
(Ⅱ)由(Ⅰ)知,的最小值.         6分
,則.
,解得.                                  8分
內變化時,的變化情況如下:

所以函數的最大值為,即.
因為,所以.                    11分
考點:1導數;2利用導數判斷函數的單調性;3利用單調性求最值。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知f(x)=exax-1.
(1)求f(x)的單調增區間;
(2)若f(x)在定義域R內單調遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數處存在極值.
(1)求實數的值;
(2)函數的圖像上存在兩點A,B使得是以坐標原點O為直角頂點的直角三角形,且斜邊AB的中點在軸上,求實數的取值范圍;
(3)當時,討論關于的方程的實根個數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=exkx2,x∈R.
(1)若k,求證:當x∈(0,+∞)時,f(x)>1;
(2)若f(x)在區間(0,+∞)上單調遞增,試求k的取值范圍;
(3)求證:<e4(n∈N*)..

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(1)已知函數f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求實數t的取值范圍;
(2)證明:<ln,其中0<a<b;
(3)設[x]表示不超過x的最大整數,證明:[ln(1+n)]≤[1++ +]≤1+[lnn](n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

,函數
(1)當時,求內的極大值;
(2)設函數,當有兩個極值點時,總有,求實數的值.(其中的導函數.)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若函數上為增函數,求實數的取值范圍;
(Ⅱ)當時,證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)當時,求函數的單調區間;
(2)若函數有兩個極值點,且,求證:;
(Ⅲ)設,對于任意時,總存在,使成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中
(Ⅰ)若是函數的極值點,求實數的值;
(Ⅱ)若對任意的為自然對數的底數)都有成立,求實數的取值范圍

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视