【題目】對于空間中的三條直線,有以下四個條件:①三條直線兩兩相交;②三條直線兩兩平行;③三條直線共點;④兩直線相交,第三條平行于其中一條與另一條相交.其中使這三條直線共面的充分條件有______(填正確結論的序號).
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓
過定點
,且在
軸上截得的弦長
,設動圓圓心
的軌跡為曲線
.
(1)求曲線的方程;
(2)過點作直線交曲線
于
兩點,問在曲線
上是否存在一點
,使得點
在以
為直徑的圓上?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在發生公共衛生事件期間,有專業機構認為該事件在一段時間內沒有發生大規模群體感染的標志為“連續10天,每天新增疑似病例不超過7人”.過去10日,A、B、C、D四地新增疑似病例數據信息如下:
A地:中位數為2,極差為5; B地:總體平均數為2,眾數為2;
C地:總體平均數為1,總體方差大于0; D地:總體平均數為2,總體方差為3.
則以上四地中,一定符合沒有發生大規模群體感染標志的是_______(填A、B、C、D)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,點為圓
:
上一動點,過點
分別作
軸,
軸的垂線,垂足分別為
,
,連接
延長至點
,使得
,點
的軌跡記為曲線
.
(1)求曲線的方程;
(2)若點,
分別位于
軸與
軸的正半軸上,直線
與曲線
相交于
,
兩點,且
,試問在曲線
上是否存在點
,使得四邊形
為平行四邊形,若存在,求出直線
方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為了調查小區成年居民對環境治理情況的滿意度(滿分按100計),隨機對20名六十歲以上的老人和20名十八歲以上六十歲以下的中青年進行了不記名的問卷調查,得到了如下統計結果:
表1:六十歲以上的老人對環境治理情況的滿意度與頻數分布表
滿意度 | |||||
人數 | 1 | 5 | 6 | 5 | 3 |
表2:十八歲以上六十歲以下的中青年人對環境治理情況的滿意度與頻數分布表
滿意度 | |||||
人數 | 2 | 4 | 8 | 4 | 2 |
表3:
滿意度小于80 | 滿意度不小于80 | 合計 | |
六十歲以上老人人數 | |||
十八歲以上六十歲以下的中青年人人數 | |||
合計 |
(1)若該小區共有中青年人500人,試估計其中滿意度不少于80的人數;
(2)完成表3的列聯表,并回答能否有
的把握認為“小區成年居民對環境治理情況的滿意度與年齡有關”?
(3)從表3的六十歲以上的老人“滿意度小于80”和“滿意度不小于80”的人數中用分層抽樣的方法抽取一個容量為5的樣本,再從中任取3人,求至少有兩人滿意小于80的概率.
附:,其中
.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數(其中
,m,n為常數)
(1)當時,對
有
恒成立,求實數n的取值范圍;
(2)若曲線在
處的切線方程為
,函數
的零點為
,求所有滿足
的整數k的和.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com