【題目】已知f(x)=sin(2014x+ )+cos(2014x﹣
)的最大值為A,若存在實數x1 , x2 , 使得對任意實數x總有f(x1)≤f(x)≤f(x2)成立,則A|x1﹣x2|的最小值為( )
A.
B.
C.
D.
【答案】A
【解析】解:∵f(x)=sin(2014x+ )+cos(2014x﹣
)=
sin2014x+
cos2014x+
cos2014x+
sin2014x
= sin2014x+cos2014x
=2sin(2014x+ ),
∴A=f(x)max=2,周期T= =
,
又存在實數x1 , x2 , 對任意實數x總有f(x1)≤f(x)≤f(x2)成立,
∴f(x2)=f(x)max=2,f(x1)=f(x)min=﹣2,
|x1﹣x2|的最小值為 T=
,又A=2,
∴A|x1﹣x2|的最小值為 .
故選:A.
【考點精析】關于本題考查的三角函數的最值,需要了解函數,當
時,取得最小值為
;當
時,取得最大值為
,則
,
,
才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x﹣b)lnx+x2在區間[1,e]上單調遞增,則實數b的取值范圍是( )
A.(﹣∞,﹣3]
B.(﹣∞,2e]
C.(﹣∞,3]
D.(﹣∞,2e2+2e]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
過點
,且與
的交于
,
.
(1) 用 表示
,
的橫坐標;
(2)設以 為焦點,過點
,
且開口向左的拋物線的頂點坐標為
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ﹣alnx,其中a>0,x>0,e是自然對數的底數. (Ⅰ)討論f(x)的單調性;
(Ⅱ)設函數g(x)= ,證明:0<g(x)<1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若存在實常數k和b,使得函數F(x)和G(x)對其公共定義域上的任意實數x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”,已知函數f(x)=x2(x∈R),g(x)= (x<0),h(x)=2elnx,有下列命題:
①F(x)=f(x)﹣g(x)在 內單調遞增;
②f(x)和g(x)之間存在“隔離直線”,且b的最小值為﹣4;
③f(x)和g(x)之間存在“隔離直線”,且k的取值范圍是(﹣4,0];
④f(x)和h(x)之間存在唯一的“隔離直線”y=2 x﹣e.
其中真命題的個數為(請填所有正確命題的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A. 命題“”的否定是“
”
B. “在
上恒成立”
“
在
上恒成立”
C. 命題“已知,若
,則
或
”是真命題
D. 命題“若,則函數
只有一個零點”的逆命題為真命題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com