【題目】下列敘述: ①函數 是奇函數;
②函數 的一條對稱軸方程為
;
③函數 ,
,則f(x)的值域為
;
④函數 有最小值,無最大值.
所有正確結論的序號是 .
科目:高中數學 來源: 題型:
【題目】已知直棱柱ABC﹣A1B1C1中,AC=BC=CC1= AB,E是線段CC1的中點,連接AE,B1E,AB1 , B1C,BC1 , 得到的圖形如圖所示. (Ⅰ)證明BC1⊥平面AB1C;
(Ⅱ)求二面角E﹣AB1﹣C的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
(1)求函數f(x)的最小正周期和最大值,并求出x為何值時,f(x)取得最大值;
(2)求函數f(x)在[﹣2π,2π]上的單調增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若先將函數y= sin(x﹣
)+cos(x﹣
)圖象上各點的縱坐標不變,橫坐標縮短到原來的
倍,再將所得圖象向左平移
個單位,所得函數圖象的一條對稱軸的方程是( )
A.x=
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某港口的水深y(米)是時間t(0≤t≤24,單位:小時)的函數,下面是每天時間與水深的關系表:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 10 | 13 | 9.9 | 7 | 10 | 13 | 10.1 | 7 | 10 |
經過長期觀測,y=f(t)可近似的看成是函數y=Asinωt+b
(1)根據以上數據,求出y=f(t)的解析式;
(2)若船舶航行時,水深至少要11.5米才是安全的,那么船舶在一天中的哪幾段時間可以安全的進出該港?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在棱長都相等的四面體P-ABC中,D、E、F分別是AB、BC、CA的中點,則下面四個結論中不成立的是 ( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com