【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知b+c=2acosB.
(1)證明:A=2B
(2)若△ABC的面積S= ,求角A的大。
【答案】
(1)
證明:∵b+c=2acosB,
∴sinB+sinC=2sinAcosB,
∴sinB+sin(A+B)=2sinAcosB
∴sinB+sinAcosB+cosAsinB=2sinAcosB
∴sinB=2=sinAcosB﹣cosAsinB=sin(A﹣B)
∵A,B是三角形中的角,
∴B=A﹣B,
∴A=2B
(2)
解:∵△ABC的面積S= ,
∴ bcsinA=
,
∴2bcsinA=a2,
∴2sinBsinC=sinA=sin2B,
∴sinC=cosB,
∴B+C=90°,
∴A=90°
【解析】(1)利用正弦定理,結合和角的正弦公式,即可證明A=2B(2)若△ABC的面積S= ,則
bcsinA=
,結合正弦定理、二倍角公式,即可求角A的大。绢}考查了正弦定理,解三角形,考查三角形面積的計算,考查二倍角公式的運用,屬于中檔題.
【考點精析】解答此題的關鍵在于理解正弦定理的定義的相關知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:
;
;
.
科目:高中數學 來源: 題型:
【題目】已知橢圓E: =1(a>b>0),傾斜角為45°的直線與橢圓相交于M、N兩點,且線段MN的中點為(﹣1,
).過橢圓E內一點P(1,
)的兩條直線分別與橢圓交于點A、C和B、D,且滿足
,其中λ為實數.當直線AP平行于x軸時,對應的λ=
.
(1)求橢圓E的方程;
(2)當λ變化時,kAB是否為定值?若是,請求出此定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=1,an+1=3an+1.
(1)證明{an+ }是等比數列,并求{an}的通項公式;
(2)證明: +
+…+
<
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“雙十一”已經成為網民們的網購狂歡節,某電子商務平臺對某市的網民在今年“雙十一”的網購情況進行摸底調查,用隨機抽樣的方法抽取了100人,其消費金額(百元)的頻率分布直方圖如圖所示:
(1)求網民消費金額的平均值和中位數
;
(2)把下表中空格里的數填上,能否有90%的把握認為網購消費與性別有關;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(a∈R).
(Ⅰ)若f(1)=2,求函數y=f(x)-2x在[,2]上的值域;
(Ⅱ)當a∈(0,)時,試判斷f(x)在(0,1]上的單調性,并用定義證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數,且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的偶函數f(x)滿足f(x+2)=f(x),且在[1,2]上是減函數,若α,β是銳角三角形的兩個內角,則( 。
A. f B. f
C. f D. f
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com