精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓E: =1(a>b>0),傾斜角為45°的直線與橢圓相交于M、N兩點,且線段MN的中點為(﹣1, ).過橢圓E內一點P(1, )的兩條直線分別與橢圓交于點A、C和B、D,且滿足 ,其中λ為實數.當直線AP平行于x軸時,對應的λ=

(1)求橢圓E的方程;
(2)當λ變化時,kAB是否為定值?若是,請求出此定值;若不是,請說明理由.

【答案】
(1)解:設M(m1,n1)、N(m2,n2),則

兩式相減 ,

故a2=3b2

當直線AP平行于x軸時,設|AC|=2d,

,則 ,解得 ,

故點A(或C)的坐標為

代入橢圓方程 ,得

a2=3,b2=1,

所以方程為


(2)解:設A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4

由于 ,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),

…①

同理 可得 …②

由①②得: …③

將點A、B的坐標代入橢圓方程得 ,

兩式相減得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,

于是3(y1+y2)kAB=﹣(x1+x2)…④

同理可得:3(y3+y4)kCD=﹣(x3+x4

于是3(y3+y4)kAB=﹣(x3+x4)(∵AB∥CD,∴kAB=kCD

所以3λ(y3+y4)kAB=﹣λ(x3+x4)…⑤

由④⑤兩式相加得到:3[y1+y2+λ(y3+y4)]kAB=﹣[(x1+x2)+λ(x3+x4)]

把③代入上式得3(1+λ)kAB=﹣2(1+λ),

解得: ,

當λ變化時,kAB為定值,


【解析】(1)將M和N點坐標代入橢圓方程,根據斜率公式求得kMN=1,求得a和b的關系,當直線AP平行于x軸時,設|AC|=2d,求得A點坐標,代入橢圓方程,即可求得a和b,求得橢圓方程;(2)設出A、B、C和D點坐標,由向量共線, ,及A和B在橢圓上,利用斜率公式,kAB=kCD , 求得3(1+λ)kAB=﹣2(1+λ),即可求得kAB為定值.
【考點精析】本題主要考查了橢圓的標準方程的相關知識點,需要掌握橢圓標準方程焦點在x軸:,焦點在y軸:才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某小學為迎接校運動會的到來,在三年級招募了16名男志愿者和14名女志愿者.調查發現,男、女志愿者中分別各有10人和6人喜歡運動,其余人員不喜歡運動.

1)根據以上數據完成2×2列聯表,并說明是否有95%的把握認為性別與喜歡運動有關;

喜歡運動

不喜歡運動

總計

總計

2)如果喜歡運動的女志愿者中恰有4人懂得醫療救護,現從喜歡運動的女志愿者中抽取2名負責處理應急事件,求抽出的2名志愿者都懂得醫療救護的概率.

附:K2,

P(K2k0)

0.050

0.025

0.010

0.001

k0

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求的最小正周期

(2)設,若上的值域為,求實數的值;

(3)若對任意的恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點為,點在橢圓上.

(1)求橢圓的標準方程;

(2)是否存在斜率為的直線與橢圓相交于兩點,使得 是橢圓的左焦點?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設直線過點,且傾斜角為。

(1)寫出直線的標準參數方程;

(2)設此直線與曲線( 為參數)交于兩點,求的值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C經過點(3,6)且焦點在x軸上.

(1)求拋物線C的標準方程;

(2)直線l 過拋物線C的焦點F且與拋物線C交于A,B兩點,求A,B兩點間的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x﹣l|+|x﹣3|.
(1)解不等式f(x)≤6;
(2)若不等式f(x)≥ax﹣1對任意x∈R恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設ξ為隨機變量,從側面均是等邊三角形的正四棱錐的8條棱中任選兩條,ξ為這兩條棱所成的角.
(1)求概率 ;
(2)求ξ的分布列,并求其數學期望E(ξ).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知b+c=2acosB.
(1)證明:A=2B
(2)若△ABC的面積S= ,求角A的大。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视