精英家教網 > 高中數學 > 題目詳情

已知的圖象經過點,且在處的切線方程是
(1)求的解析式;(2)求的單調遞增區間

(1);(2)單調遞增區間為

解析試題分析:(1)的圖象經過點,則,         2分
          4分
切點為,則的圖象經過點
           6分
(2)
單調遞增區間為            12分
考點:導數的幾何意義,直線方程,利用導數研究函數的單調性。
點評:中檔題,切線的斜率,等于在切點的導函數值。在某區間,導數非負,函數為增函數,導數非正,函數為減函數。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)討論函數的單調性;
(2)若時,關于的方程有唯一解,求的值;
(3)當時,證明: 對一切,都有成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求在區間上的最大值;
(2)若函數在區間上存在遞減區間,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求的單調遞增區間;
(2)若處的切線與直線垂直,求證:對任意,都有;
(3)若,對于任意,都有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.        
(Ⅰ)求的最小值;
(Ⅱ)若對所有都有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)求函數的圖像在處的切線方程;
(Ⅱ)設實數,求函數上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)求的單調區間;
(2)若關于的方程在區間上有唯一實根,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若上的最大值為,求實數的值;
(Ⅱ)若對任意,都有恒成立,求實數的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,設,對任意給定的正實數,曲線 上是否存在兩點,使得是以為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的導函數是,處取得極值,且
,
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區間上的最大值為,若對任意的總有
成立,求的取值范圍;
(Ⅲ)設是曲線上的任意一點.當時,求直線OM斜率的最
小值,據此判斷的大小關系,并說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视