精英家教網 > 高中數學 > 題目詳情

【題目】在銳角△ABC中, =
(1)求角A;
(2)若a=2,且sinB+cos(C+2B﹣ )取得最大值時,求△ABC的面積.

【答案】
(1)解:銳角△ABC中,∵ = ,∴ = ,∴sinA= ,A=
(2)解:由(1)可得B+C= ,∴C+2B﹣ =B﹣ ,

∴sinB+cos(C+2B﹣ )=sinB+cos(B﹣ )= sinB+ cosB= sin(B+ ),

故當B+ = 時,即B= 時,sinB+cos(C+2B﹣ )取得最大值 ,此時,A=B=C= ,△ABC為等邊三角形,

∴△ABC的面積為 bcsinA= 22 =


【解析】(1)利用余弦定理、誘導公式化簡所給的式子,求得sinA 的值,可得A的值.(2)由(1)可得B+C= ,故有C+2B﹣ =B﹣ ,再利用兩角和差的三角公式、正弦函數的值域求得sinB+cos(C+2B﹣ )取得最大值 ,此時,△ABC為等邊三角形,從而求得它的面積.
【考點精析】關于本題考查的正弦定理的定義和余弦定理的定義,需要了解正弦定理:;余弦定理:;;才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為了得到函數y=sin2x的圖象,只需把函數y=sin(2x﹣ )的圖象(
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】梯形ABCD頂點B、C在以AD為直徑的圓上,AD=2米,

(1)如圖1,若電熱絲由AB,BC,CD這三部分組成,在AB,CD上每米可輻射1單位熱量,在BC上每米可輻射2單位熱量,請設計BC的長度,使得電熱絲輻射的總熱量最大,并求總熱量的最大值;

(2)如圖2,若電熱絲由弧和弦BC這三部分組成,在弧上每米可輻射1單位熱量,在弦BC上每米可輻射2單位熱量,請設計BC的長度,使得電熱絲輻射的總熱量最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了檢驗學習情況,某培訓機構于近期舉辦一場競賽活動,分別從甲、乙兩班各抽取10名學員的成績進行統計分析,其成績的莖葉圖如圖所示(單位:分),假設成績不低于90分者命名為“優秀學員”.

(1)分別求甲、乙兩班學員成績的平均分(結果保留一位小數);

(2)從甲班4名優秀學員中抽取兩人,從乙班2名80分以下的學員中抽取一人,求三人平均分不低于90分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為宣傳3月5日學雷鋒紀念日,重慶二外在高一,高二年級中舉行學雷鋒知識競賽,每年級出3人組成甲乙兩支代表隊,首輪比賽每人一道必答題,答對則為本隊得1分,答錯不答都得0分,已知甲隊3人每人答對的概率分別為,乙隊每人答對的概率都是.設每人回答正確與否相互之間沒有影響,用表示甲隊總得分.

(1)求隨機變量的分布列及其數學期望

(2)求甲隊和乙隊得分之和為4的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ex﹣ax﹣1,(a為實數),g(x)=lnx﹣x
(1)討論函數f(x)的單調區間;
(2)求函數g(x)的極值;
(3)求證:lnx<x<ex(x>0)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數f(x)=cos(x+ )圖象上所有點的橫坐標縮短為原來的 倍,縱坐標不變,得到函數g(x)的圖象,則函數g(x)的一個減區間是(
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ ]
D.[﹣ , ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給定橢圓C: + =1(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓”.已知橢圓C的離心率為 ,且經過點(0,1).
(1)求實數a,b的值;
(2)若過點P(0,m)(m>0)的直線l與橢圓C有且只有一個公共點,且l被橢圓C的伴隨圓C1所截得的弦長為2 ,求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx﹣kx+2,k∈R.
(1)若k=1,求函數f(x)的單調區間;
(2)若f(x)<2在R+上恒成立,求k的取值范圍;
(3)若x1>0,x2>0,x1+x2<ex1x2 , 求證x1+x2>1.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视