精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在四棱錐中,底面,四邊形為正方形,點分別為線段上的點,

1求證:平面平面;

2求證:當點不與點重合時,平面;

3時,求點到直線距離的最小值

【答案】1證明見解析;2證明見解析;3

【解析】

試題分析:1運用線面垂直與面面垂直判定定理求解;2利用線面平行的判定定理推證;3運用點到直線的距離公式計算,利用轉化與化歸思想來求解

試題解析:1證明:在正方形中,

因為底面,平面,所以

,平面,所以平面

因為平面,所以平面平面

2證明:由1知,平面,平面

中,,,所以

平面,平面,所以平面

3解:因為,所以平面,

平面,所以,所以的長就是點的距離,而點在線段上,

所以到直線距離的最小值就是到線段的距離,在中,

所以到直線距離的最小值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】中,內角的對邊分別為,已知.

(1)求角的值;

(2),當取最小值時,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓的離心率,左頂點為,過點作斜率為的直線交橢圓于點,交軸于點.

(1)求橢圓的方程;

(2)已知的中點,存在定點,使得對于任意的都有,求點的坐標;

(3)若過點作直線的平行線交橢圓于點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正四面體的頂點、分別在兩兩垂直的三條射線, 上,則在下列命題中,錯誤的是( )

A. 是正三棱錐

B. 直線與平面相交

C. 直線與平面所成的角的正弦值為

D. 異面直線所成角是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓)的左焦點為,且點上.

(1)求橢圓的方程;

(2)設直線同時與橢圓和拋物線相切,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓,直線.

(1)若直線與圓交于不同的兩點,當時,求的值.

(2)若是直線上的動點,過作圓的兩條切線切點為,究:直線是否過定點;

(3)若為圓的兩條相互垂直的弦,垂足為,求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某同學用“五點法”畫函數f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一個周期內的圖象時,列表并填入了部分數據,如表:

(1)請將上表數據補充完整,并直接寫出函數f(x)的解析式.

(2)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y=g(x)的圖象.若y=g(x)圖象的一個對稱中心為,求θ的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校學生社團心理學研究小組在對學生上課注意力集中情況的調查研究中,發現其在40分鐘的一節課中,注意力指數與聽課時間(單位:分鐘)之間的關系滿足如圖所示的曲線.當時,曲線是二次函數圖象的一部分,當時,曲線是函數圖象的一部分.根據專家研究,當注意力指數大于80時學習效果最佳.

(1)試求的函數關系式;

(2)教師在什么時段內安排核心內容,能使得學生學習效果最佳?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中.

討論的單調區間;

若直線的圖象恒在函數圖像的上方,求的取值范圍;

若存在,,使得,求證:.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视