精英家教網 > 高中數學 > 題目詳情

【題目】在四棱錐中,底面是邊長為的菱形,對角線相交于點,,平面,平面與平面所成的角為45°,的中點.

1)證明:平面平面;

2)求異面直線所成角的余弦值;

3)求直線與平面所成角的正弦值.

【答案】1)證明見解析(23

【解析】

1)根據線面垂直可以得出,結合菱形的性質,可以得到,進而得出平面,依據面面垂直判定定理可得結果.

2)取中點,根據平移找到異面直線所成角,計算長度,利用余弦定理可得結果.

3)找到平面的垂線并計算垂線段長度,并計算直線在平面的投影的長度,結合三角函數可得結果.

1)證明:平面,

菱形,且,

平面,平面平面;

2)取中點連接,如圖所示:

//,

所成角為或其補角,

菱形,

,且,

平面,,,

,又

平面,,

二面角的平面角為

中,;

,

,

中,

所成角余弦值為

3)作延長線于,則平面

平面平面,且平面平面,

平面,

與平面所成角為

,

中,,

,

即直線與平面所成角的正弦值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某市為了解社區群眾體育活動的開展情況,擬采用分層抽樣的方法從A,B,C三個行政區抽出6個社區進行調查.已知A,B,C行政區中分別有12,18,6個社區.

1)求從A,B,C三個行政區中分別抽取的社區個數;

2)若從抽得的6個社區中隨機的抽取2個進行調查結果的對比,求抽取的2個社區中至少有一個來自A行政區的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市為了引導居民合理用水,居民生活用水實行二級階梯式水價計量方法,具體如下;第一階梯,每戶居民每月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民用水量超過12噸,超過部分的價格為8元/噸,為了了解全是居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數據按照(全市居民月用水量均不超過16噸)分成8組,制成了如圖1所示的頻率分布直方圖.

(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;

(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數的值(保留兩位小數);

(Ⅲ)如圖2是該市居民張某20161~6月份的月用水費(元)與月份的散點圖,其擬合的線性回歸方程是若張某20161~7月份水費總支出為312元,試估計張某7月份的用水噸數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將所有平面向量組成的集合記作,是從的對應關系,記作,其中、、、都是實數,定義對應關系的模為:在的條件下的最大值記作,若存在非零向量,及實數使得,則稱的一個特殊值;

1)若,求;

2)如果,計算的特征值,并求相應的;

3)若,要使有唯一的特征值,實數、、、應滿足什么條件?試找出一個對應關系,同時滿足以下兩個條件:①有唯一的特征值,②,并驗證滿足這兩個條件.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】李克強總理在2018年政府工作報告指出,要加快建設創新型國家,把握世界新一輪科技革命和產業變革大勢,深入實施創新驅動發展戰略,不斷增強經濟創新力和競爭力.某手機生產企業積極響應政府號召,大力研發新產品,爭創世界名牌.為了對研發的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數據,如表所示:

單價(千元)

銷量(百件)

已知.

(1)若變量具有線性相關關系,求產品銷量(百件)關于試銷單價(千元)的線性回歸方程

(2)用(1)中所求的線性回歸方程得到與對應的產品銷量的估計值.當銷售數據對應的殘差的絕對值時,則將銷售數據稱為一個“好數據”.現從個銷售數據中任取個子,求“好數據”個數的分布列和數學期望.

(參考公式:線性回歸方程中的估計值分別為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】表示不大于實數的最大整數,函數,若關于的方程有且只有5個解,則實數的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,已知四邊形為矩形,,,的角平分線.

1)求證:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知是半徑為2的半球的直徑, 為球面上的兩點且,

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】nN*n2,集合

1)寫出集合中的所有元素;

2)設(,···,),(,···,)∈,證明“=”的充要條件是=i=1,23,···,n);

3)設集合={︳(,···,)∈},求中所有正數之和.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视