【題目】設甲、乙、丙3個乒乓球協會的運動員人數分別為27,9,18.現采用分層抽樣的方法從這3個協會中抽取6名運動員組隊參加比賽.
(1)求應從這3個協會中分別抽取的運動員的人數.
(2)將抽取的6名運動員進行編號,編號分別為A1,A2,A3,A4,A5,A6.現從這6名運動員中隨機抽取2人參加雙打比賽.
①用所給編號列出所有可能的結果;
②設事件A為“編號為A5和A6的2名運動員中至少有1人被抽到”,求事件A發生的概率.
【答案】(1) 從甲、乙、丙三個協會中抽取的運動員人數分別為3,1,2;(2)①見解析;②.
【解析】試題分析:(1)由題為分層抽樣,可知每個個體被抽到的可能性相同.則可得概率為;
(2)(i)用所給編號列出所有可能的結果則為6個元素中取出2個的所有情況可列出;
(ii)為古典概型,可結合上問中的結論,確定所包含的基本事件,代入古典概率公式可得。
試題解析:(Ⅰ)分層抽樣中,每個個體被抽到的可能性相同
乙乒乓球協會的某運動員被抽到的概率
(Ⅱ)(i)從6名運動員中隨機抽取2名的所有結果為:
(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),
(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),
(A3,A5),(A3,A6),(A4,A5),(A4,A6)),(A5,A6),共15種;
(ii)設A為事件“編號為A5和A6的兩名運動員中至少有1人被抽到”,
則事件A包含:(A1,A5),(A1,A6),(A2,A5),(A2,A6),
(A3,A5),(A3,A6),(A4,A5),(A4,A6)),(A5,A6)共9個基本事件,
∴事件A發生的概率P==
科目:高中數學 來源: 題型:
【題目】某項科研活動共進行了5次試驗,其數據如下表所示:
特征量 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
555 | 559 | 551 | 563 | 552 | |
601 | 605 | 597 | 599 | 598 |
(1)從5次特征量的試驗數據中隨機地抽取兩個數據,求至少有一個大于600的概率;
(2)求特征量關于
的線性回歸方程
;并預測當特征量
為570時特征量
的值.
(附:回歸直線的斜率和截距的最小二乘法估計公式分別為,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
.
(1)若在
上存在極值點,求
的取值范圍;
(2)設,
,若
存在最大值,記為
,則當
時,
是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某手機生產企業為了解消費者對某款手機功能的認同情況,通過銷售部隨機抽取50名購買該款手機的消費者,并發出問卷調查(滿分50分),該問卷只有30份給予回復,這30份的評分如下:
(Ⅰ)完成下面的莖葉圖,并求16名男消費者評分的中位數與14名女消費者評分的平均值;
(Ⅱ)若大于40分為“滿意”,否則為“不滿意”,完成上面的列聯表,并判斷是否有
的把握認為消費者對該款手機的“滿意度”與性別有關.
參考公式: ,其中
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數學課上,老師為了提高同學們的興趣,先讓同學們從1到3循環報數,結果最后一個同學報2;再讓同學們從1到5循環報數,最后一個同學報3;又讓同學們從1到7循報數,最后一個同學報4.請你設計一個算法,計算這個班至少有多少人,并畫出程序框圖.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)在如圖所示的五面體中,面為直角梯形,
,平面
平面
,
,
是邊長為2的正三角形.
(1)證明: 平面
;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com