【題目】在平面直角坐標系中,已知直線
過點
且傾斜角為
,以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,若曲線
的極坐標方程為
,且直線
與曲線
相交于
,
兩點.
(1)寫出曲線的直角坐標方程和直線
的參數方程;
(2)若,求直線
的直角坐標方程.
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若,
,求△ABC的面積S.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點,點F在側棱B1B上,且,
.
求證:(1)直線DE平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,
為拋物線
上不同的兩點,且
,點
且
于點
.
(1)求的值;
(2)過軸上一點
的直線
交
于
,
兩點,
在
的準線上的射影分別為
,
為
的焦點,若
,求
中點
的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是一個半圓柱與多面體構成的幾何體,平面
與半圓柱的下底面共面,且
,
為弧
上(不與
重合)的動點.
(1)證明: 平面
;
(2)若四邊形為正方形,且
,
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設min{m,n}表示m,n二者中較小的一個,已知函數f(x)=x2+8x+14,g(x)=(x>0),若x1∈[-5,a](a≥-4),x2∈(0,+∞),使得f(x1)=g(x2)成立,則a的最大值為
A.-4B.-3C.-2D.0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于圓周率,數學發展史上出現過許多有創意的求法,如著名的普豐實驗和查理斯實驗.受其啟發,我們也可以通過設計下面的實驗來估計
的值:先請120名同學每人隨機寫下一個x,y都小于1的正實數對
,再統計其中x,y能與1構成鈍角三角形三邊的數對
的個數m,最后根據統計個數m估計
的值.如果統計結果是
,那么可以估計
的值為( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com