精英家教網 > 高中數學 > 題目詳情

(滿分16分)已知函數,其中是自然對數的底數.
(1)證明:上的偶函數;
(2)若關于的不等式上恒成立,求實數的取值范圍;
(3)已知正數滿足:存在,使得成立,試比較的大小,并證明你的結論.

(1)證明見解析;(2);(3)當時,,當時,,當時,

解析試題分析:
試題解析:(1)證明:函數定義域為,∵,∴是偶函數.
(2)由,由于當時,,因此,即,所以,令,設,則,,∵,∴時等號成立),即,所以
(3)由題意,不等式上有解,由,記,,顯然,當時,(因為),故函數上增函數,,于是上有解,等價于,即.考察函數,,當時,,當時,,當,即上是增函數,在上是減函數,又,,所以當時,,即,,當時,,,即,,因此當時,,當時,,當時,
【考點】(1)偶函數的判斷;(2)不等式恒成立問題與函數的交匯;(3)導數與函數的單調性,比較大。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)求的定義域;
(2)討論的奇偶性;
(3)討論的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知定義在上的三個函數,,且處取得極值.
(1)求a的值及函數的單調區間.
(2)求證:當時,恒有成立.[來源

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)判定并證明函數的奇偶性;
(2)試證明在定義域內恒成立;
(3)當時,恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,(1) 若的解集是,求實數的值;(2) 若恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數f(x)=x2+2bx+c(b、c∈R).
(1)若f(x)≤0的解集為{x|-1≤x≤1},求實數b、c的值;
(2)若f(x)滿足f(1)=0,且關于x的方程f(x)+x+b=0的兩個實數根分別在區間(-3,-2),(0,1)內,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某小區想利用一矩形空地建市民健身廣場,設計時決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個等腰直角三角形,其中,,且中,,經測量得到.為保證安全同時考慮美觀,健身廣場周圍準備加設一個保護欄.設計時經過點作一直線交,從而得到五邊形的市民健身廣場,設
(1)將五邊形的面積表示為的函數;
(2)當為何值時,市民健身廣場的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(a是常數,a∈R)
(1)當a=1時求不等式的解集.
(2)如果函數恰有兩個不同的零點,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知函數的定義域為,集合,若P:“”是
Q:“”的充分不必要條件,則實數的取值范圍    

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视